共查询到20条相似文献,搜索用时 0 毫秒
1.
Javelle A Rodríguez-Pastrana BR Jacob C Botton B Brun A André B Marini AM Chalot M 《FEBS letters》2001,505(3):393-398
Heterologous expression of the yeast triple Mep mutant has enabled the first molecular characterization of AMT/MEP family members in an ectomycorrhizal fungus. External hyphae, which play a key role in nitrogen nutrition of trees, are considered as the absorbing structure of the ectomycorrhizal symbiosis and therefore molecular studies on ammonium transport in hyphae are urgently needed. The kinetic properties of AMT2 and AMT3 from Hebeloma cylindrosporum were studied in Saccharomyces cerevisiae. Expression of HcAmts in the yeast triple Mep mutant restored ammonium retention within cells. The HcAmts did not complement the ammonium sensing defect phenotype of Mep2Delta cells during pseudohyphal differentiation. Northern blot analysis in H. cylindrosporum showed that the HcAMTs were up-regulated upon nitrogen deprivation and down-regulated by ammonium. 相似文献
2.
ROLAND MARMEISSE PATRICIA JARGEAT FRANÇOISE WAGNER GILLES GAY & JEAN-CLAUDE DEBAUD 《The New phytologist》1998,140(2):311-318
To clarify the role of the fungal nitrate assimilation pathway in nitrate reduction by mycorrhizal plants, nitrate reductase (NR)-deficient (NR− ) mutants of the ectomycorrhizal basidiomycete Hebeloma cylindrosporum Romagnesi have been selected. These mutants were produced by u.v. mutagenesis on protoplasts originating from homokaryotic mycelia belonging to complementary mating types of this heterothallic tetrapolar species. Chlorate-resistant mutants were first selected in the presence of different nitrogen (N) sources in the culture medium. Among 1495 chlorate resistant mycelia, 30 failed to grow on nitrate and lacked a detectable NR activity. Growth tests on different N sources suggested that the NR activity of all the different mutants is specifically impaired as a result of mutations in either the gene coding for NR apoprotein or genes controlling the synthesis of the molybdenum cofactor. Furthermore, restoration of NR activity in some of the dikaryons obtained after crosses between the different mutant mycelia suggested that not all the selected mutations mapped in the same gene. Utilization of N on a NH4 15 NO3 medium was studied for two mutant strains and their corresponding wild-type homokaryons. None of the mutants could use nitrate whereas 15 N enrichment values indicated that 13–27% of N present in 13-d-old wild-type mycelia originated from nitrate. Apparently, the mutant mycelia do not compensate their inability to use nitrate by a more efficient use of ammonium. These different NR mutants still form mycorrhizas with the habitual host plant, Pinus pinaster (Ait.), making them suitable for study of the contribution of the fungal nitrate assimilation pathway to nitrate assimilation by mycorrhizal plants. 相似文献
3.
Müller T Benjdia M Avolio M Voigt B Menzel D Pardo A Frommer WB Wipf D 《Mycorrhiza》2006,16(6):437-442
Hebeloma cylindrosporum is a model fungus for mycorrhizal studies because of its fast growth rate, simple nutritional requirements, and completion of its life cycle in vitro, and because it is amenable to transformation. To advance cell biological research during establishment of symbiosis, a tool that would enable the direct visualisation of fusion proteins in the different symbiotic tissues [namely, the expression of reporter genes such as Green Fluorescent Protein (GFP)] was still a missing tool. In the present study, H. cylindrosporum was transformed using Agrobacterium carrying the binary plasmid pBGgHg containing the Escherichia coli hygromycin B phosphotransferase (hph) and the EGFP genes, both under the control of the Agaricus bisporus glyceraldehyde-3-phosphate dehydrogenase promoter. EGFP expression was successfully detected in transformants. The fluorescence was uniformly distributed in the hyphae, while no significant background signal was detected in control hyphae. The suitability of EGFP for reporter gene studies in Hebeloma cylindrosporum was demonstrated opening up new perspectives in the Hebeloma genetics.Tobias Müller and Mariam Benjdia contributed equally to this work. 相似文献
4.
The ectomycorrhizal (ECM) fungus Hebeloma cylindrosporum is an appropriate model to study the intraspecific functional diversity of ECM fungi in forest ecosystems. Numerous metabolic genes, specifically genes related to nitrogen assimilation, have been characterised for this species and the spatial and temporal structures of its natural populations have been extensively worked out. In this paper, we reveal the extent to which intraspecific variation exists within this fungus for the ability to use organic nitrogen, an important functional characteristic of ECM fungi. In addition to ammonium and nitrate, H. cylindrosporum can use at least 13 different amino acids out of 21 tested as sole nitrogen source, as well as urea and proteins. By screening 22 genetically different wild type haploid strains we identified obvious differences in use of six nitrogen sources: alanine, glycine, phenylalanine, serine, bovine serum albumin and gelatine. Of the 22 haploid strains, 11 could not use at least one of these six nitrogen sources. The inability of some haploid strains to use a nitrogen source was found to be a recessive character. Nevertheless, obvious differences in use of the four amino acids tested were also measured between wild type dikaryons colonising a common Pinus pinaster root system. This study constitutes the basis for future experiments that will address the consequences of the functional diversity of an ECM fungus on the functioning of the ECM symbiosis under natural conditions. 相似文献
5.
Michel Chalot Annick Brun Jean Claude Debaud Bernard Botton 《Physiologia plantarum》1991,83(1):122-128
Hebeloma cylindrosporum strain h 17 was grown on media containing either glutamate or ammonium as nitrogen source. Growth tests and in vitro activity measurements revealed that both glutamine synthetase (GS. EC 6.3.1.2) and NADP-specific glutamate dehydrogenase (NADP-GDH, EC 1.4.1.4) are fully functional in wild type mycelia grown on glutamate or ammonium as sole nitrogen source. However, NADP-GDH appeared to be more active than GS in stationary growing mycelia. NADP-GDH is also able to sustain adequate ammonium assimilation in methionine sulfoximine (MSX)-treated mycelia since they grew as well as mycelia fed with ammonium alone. The NADP-GDH also appeared to be L-glutamate inducible whereas GS was repressed by ammonium. The NADP-GDH deficient strain, when transferred from a glutamate containing medium to an ammonium containing medium, exhibited a derepressed GS, although this enzyme did not fully substitute for the deficiency of NADP-GDH in ammonium assimilation. The low NADP-GDH activity of the mutant strain exhibited a reduced mobility on a 6% constant polyacrylamide gel. By contrast, the two enzymes had identical molecular weights, estimated to be ca 295 kDa on gradient polyacrylamide gel. The involvement of NADP-GDH and GS enzymes in nitrogen assimilation is discussed. 相似文献
6.
Summary Glutamate dehydrogenase (GDH) is the key enzyme of ammonium assimilation by ectomycorrhizal fungi. Its activity might be use as a criterion to select mycelia capable of enhancing the nitrogen nutrition of the host plants. Genetical variability of the GDH activity of the ectomycorrhizal fungus Hebeloma cylindrosporum Romagnési was studied in an attempt to determine if this enzyme activity could be improved by way of chromosomal genetics. The activity of 11 wild strains was compared with that of 70 mycelia obtained as the progeny of a laboratory fruiting strain HC1. These 70 mycelia were 20 monokaryons (5 for each mating type) and the 50 synthesized dikaryons obtained from all the compatible fusions between these monokaryons. The specific GDH activity of the 11 wild strains ranged from 1.5 to 11.6 nkat mg-1 fungal protein. The activity of the monokaryotic progeny of the HC1 strain was, on average, three times lower (2.85 n kat mg-1 fungal protein) than that of the parental dikaryon. In contrast, synthesized dikaryons originating from these monokaryons were very variable and had an average values similar to that of the parental dikaryon (9.1 nkat mg-1 fungal protein). Eighteen of these synthesized dikaryons contained an activity higher than that of the original HC1 strain. The variation of the GDH activity of these dikaryons involves additive and non additive (interactive) components, each of them accounting for ca. 50% of the genetical variation. The non additive variation could not be explained by a model involving only dominance. These results are discussed with reference to the genetical improvement of mycorrhizal fungi in order to enhance nitrogen nutrition of the host plants.Abbreviations GDH
glutamate dehydrogenase
- IAA
indole-3-acetic acid
- NADP
nicotimamide adenine dinucleotide phosphate 相似文献
7.
Fine-scale structure of populations of the ectomycorrhizal fungus Hebeloma cylindrosporum in coastal sand dune forest ecosystems 总被引:4,自引:0,他引:4
The basidiomycete mushroom Hebeloma cylindrosporum is a frequently found pioneer ectomycorrhizal species naturally associated with Pinus pinaster trees growing in coastal sand dune ecosystems along the Atlantic south-west coast of France. The genotypic diversity and spatial structure of three populations of this fungal species have been studied. At each site the basidiocarps were mapped, sampled and propagated as pure mycelial cultures. For each of the isolates, we have studied polymorphisms in the mitochondrial genome, polymorphisms at two different nuclear loci and also fingerprints produced with a multicopy DNA probe. The comparison of the different polymorphisms obtained, with each of the four molecular methods used, allowed the identification of several of the different genets present in each site. In two of the studied sites most of the basidiocarps, which often occurred as dense patches of 10–30 in 1 m2 or less, were of a unique genotype, suggesting the below-ground mycelia to be of a small size (from 50 cm2 to approx. 7 m2 for the larger mycelia) and that the root system of a single Pinus tree can host several genets of the same symbiotic fungus. In the two sites, which were studied again after a 3-year interval, none of the genotypes identified in the first year of sampling was re-identified 3 years later. These results contrast with those reported for other species of soilborne homobasidiomycete species, either ectomycorrhizal, parasitic or saprophytic, showing mostly large clones resulting from the vegetative growth and from persistence of below-ground mycelia. Sexual reproduction through meiospore dispersal seems to play a key role in the structuring of the populations of H. cylindrosporum. Mycelia associated with the root systems seem to be replaced after 1 or a few years, during which basidiocarp differentiation takes place. As opposed to the few other studied ectomycorrhizal species, H. cylindrosporum has the characteristics of ruderal species, with a short life-span adapted to pioneer situations, e.g. to nutrient-poor and unstable sandy soils of coastal sand dunes. 相似文献
8.
9.
10.
11.
12.
Corratgé C Zimmermann S Lambilliotte R Plassard C Marmeisse R Thibaud JB Lacombe B Sentenac H 《The Journal of biological chemistry》2007,282(36):26057-26066
Ectomycorrhizal symbiosis between fungi and woody plants strongly improves plant mineral nutrition and constitutes a major biological process in natural ecosystems. Molecular identification and functional characterization of fungal transport systems involved in nutrient uptake are crucial steps toward understanding the improvement of plant nutrition and the symbiotic relationship itself. In the present report a transporter belonging to the Trk family is identified in the model ectomycorrhizal fungus Hebeloma cylindrosporum and named HcTrk1. The Trk family is still poorly characterized, although it plays crucial roles in K(+) transport in yeasts and filamentous fungi. In Saccharomyces cerevisiae K(+) uptake is mainly dependent on the activity of Trk transporters thought to mediate H(+):K(+) symport. The ectomycorrhizal HcTrk1 transporter was functional when expressed in Xenopus oocytes, enabling the first electrophysiological characterization of a transporter from the Trk family. HcTrk1 mediates instantaneously activating inwardly rectifying currents, is permeable to both K(+) and Na(+), and displays channel-like functional properties. The whole set of data and particularly a phenomenon reminiscent of the anomalous mole fraction effect suggest that the transport does not occur according to the classical alternating access model. Permeation appears to occur through a single-file pore, where interactions between Na(+) and K(+) might result in Na(+):K(+) co-transport activity. HcTrk1 is expressed in external hyphae that explore the soil when the fungus grows in symbiotic condition. Thus, it could play a major role in both the K(+) and Na(+) nutrition of the fungus (and of the plant) in nutrient-poor soils. 相似文献
13.
Plant potassium nutrition in ectomycorrhizal symbiosis: properties and roles of the three fungal TOK potassium channels in Hebeloma cylindrosporum
下载免费PDF全文

Carmen Guerrero‐Galán Amandine Delteil Kevin Garcia Gabriella Houdinet Geneviève Conéjéro Isabelle Gaillard Hervé Sentenac Sabine Dagmar Zimmermann 《Environmental microbiology》2018,20(5):1873-1887
Ectomycorrhizal fungi play an essential role in the ecology of boreal and temperate forests through the improvement of tree mineral nutrition. Potassium (K+) is an essential nutrient for plants and is needed in high amounts. We recently demonstrated that the ectomycorrhizal fungus Hebeloma cylindrosporum improves the K+ nutrition of Pinus pinaster under shortage conditions. Part of the transport systems involved in K+ uptake by the fungus has been deciphered, while the molecular players responsible for the transfer of this cation towards the plant remain totally unknown. Analysis of the genome of H. cylindrosporum revealed the presence of three putative tandem‐pore outward‐rectifying K+ (TOK) channels that could contribute to this transfer. Here, we report the functional characterization of these three channels through two‐electrode voltage‐clamp experiments in oocytes and yeast complementation assays. The expression pattern and physiological role of these channels were analysed in symbiotic interaction with P. pinaster. Pine seedlings colonized by fungal transformants overexpressing two of them displayed a larger accumulation of K+ in shoots. This study revealed that TOK channels have distinctive properties and functions in axenic and symbiotic conditions and suggested that HcTOK2.2 is implicated in the symbiotic transfer of K+ from the fungus towards the plant . 相似文献
14.
? Many plants combine sexual reproduction with vegetative propagation, but how trade-offs between these reproductive modes affect fitness is poorly understood. Although such trade-offs have been demonstrated at the level of individual shoots (ramets), there is little evidence that they scale up to affect genet fitness. For hermaphrodites, reproductive investment is further divided between female and male sexual functions. Female function should generally incur greater carbon costs than male function, which might involve greater nitrogen (N) costs. ? Using a common garden experiment with diclinous, clonal Sagittaria latifolia we manipulated investment in reproduction through female and male sex functions of 412 plants from monoecious and dioecious populations. ? We detected a 1?:?1 trade-off between biomass investment in female function and clonal reproduction. For male function, there was no apparent trade-off between clonal and sexual reproduction in terms of biomass investment. Instead, male function incurred a substantially higher N cost. ? Our results indicate that: trade-offs between investment in clonal propagation and sexual reproduction occur at the genet level in S.?latifolia; and sexual reproduction interferes with clonal expansion, with investment in female function limiting the quantity of clonal propagules produced, and investment in male function limiting the nutrient content of clonal propagules. 相似文献
15.
16.
The effect of different genotypes of the ectomycorrhizal fungus Hebeloma cylindrosporum on in vitro rooting of micropropagated cuttings of Prunus avium and P. cerasus was studied in an attempt to determine whether ectomycorrhizal fungi could enhance in vitro adventitious root formation in
plants which form arbuscular endomycorrhizas. The rooting percentage of P. avium cuttings was approximately 16% in the absence of hormonal treatment; it increased up to 30% in the presence of 5.7 μM IAA
which was the most favourable auxin concentration. The rooting percentage of cuttings cultivated in the absence of IAA was
enhanced by all the studied strains of H. cylindrosporum. It ranged from 50 to 60% with the IAA-overproducing mutant D 111 or the wild-type dikaryon D1, to 100% in the presence of
the mutants 331 or D 117. The cuttings of P. cerasus showed a higher rooting ability than those of P. avium since approximately 40% of them were able to root in the absence of hormonal treatment. Except for the mutant D117, their
rooting percentage was not significantly improved by H. cylindrosporum. Fungal inoculation also affected the survival of cuttings at acclimatization: 50% of the uninoculated P. avium cuttings survived whereas the survival percentage of inoculated cuttings ranged from 30 to 100% depending on the fungal genotype.
With P. cerasus, the percentage of survival of uninoculated cuttings ranged from 85 to 100% and fungi either did not significantly improve
it or lowered it. At acclimatization fungal hyphae could be observed in close contact with adventitious roots, but they did
not establish mycorrhizal association. The shoot height of P. avium plantlets obtained from inoculated cuttings was not significantly different from that of plantlets originating from uninoculated
ones. By contrast, fungal inoculation generally depressed the growth of acclimatized P. cerasus plantlets. The possibility of using ectomycorrhizal fungi as a tool to enhance rooting of micropropagated cuttings of plants
which do not form ectomycorrhizas is discussed.
Received: 25 November 1996 / Accepted: 2 June 1997 相似文献
17.
Benjdia M Rikirsch E Müller T Morel M Corratgé C Zimmermann S Chalot M Frommer WB Wipf D 《The New phytologist》2006,170(2):401-410
Constraints on plant growth imposed by low availability of nitrogen are a characteristic feature of ecosystems dominated by ectomycorrhizal plants. Ectomycorrhizal fungi play a key role in the N nutrition of plants, allowing their host plants to access decomposition products of dead plant and animal materials. Ectomycorrhizal plants are thus able to compensate for the low availability of inorganic N in forest ecosystems. The capacity to take up peptides, as well as the transport mechanisms involved, were analysed in the ectomycorrhizal fungus Hebeloma cylindrosporum. The present study demonstrated that H. cylindrosporum mycelium was able to take up di- and tripeptides and use them as sole N source. Two peptide transporters (HcPTR2A and B) were isolated by yeast functional complementation using an H. cylindrosporum cDNA library, and were shown to mediate dipeptide uptake. Uptake capacities and expression regulation of both genes were analysed, indicating that HcPTR2A was involved in the high-efficiency peptide uptake under conditions of limited N availability, whereas HcPTR2B was expressed constitutively. 相似文献
18.
Meghan Avolio Tobias Müller Anja Mpangara Michael Fitz Ben Becker Alexander Pauck Anja Kirsch Daniel Wipf 《Mycorrhiza》2012,22(7):515-524
Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate. 相似文献
19.
20.
The relative contributions of sexual reproduction and clonal propagation in Opuntia rastrera from two habitats in the Chihuahuan Desert 总被引:2,自引:0,他引:2
María Del Carmen Mandujano Carlos Montan† Ignacio Méndez‡ Jordan Golubov 《Journal of Ecology》1998,86(6):911-921
1 The clonal cactus Opuntia rastrera shows predominantly sexual reproduction in grasslands (GH) and clonal propagation in nopaleras (NH). We assessed the effects of light, herbivory, water availability and the habitat an offspring came from on the survival and growth of sexual or clonal offspring (i.e. seedlings and cladodes), through 3- and 4-year common garden and short-term greenhouse experiments.
2 Shading by nurse plants increased seedling survival in the field by an order of magnitude, and a small additional advantage due to predator protection by grasses was observed. Strong herbivory transforms a facultative nurse–protégé relationship for seedlings into an obligatory one.
3 In the greenhouse seedlings grew better under shade, but in the field the production of the first cladode was delayed in seedlings in the more shaded GH. Competition for soil resources may be more intense under a dense grass tussock than under a open shrub, thus affecting the nurse–protégé relationship. Seedling survival under nurse plants was similar in GH and NH, but higher plant cover suggests that a larger number of seedlings will establish in GH in the long term.
4 Cladode survival was higher in NH. Cladodes were more successful than seedlings at establishing in intercanopy areas, possibly due to physiological differences as well as their ability to survive partial predation. Cladode survival in intercanopy areas may explain the enhanced clonal propagation in the more open NH scrubland, together with their susceptibility to the flooding which affects GH.
5 The high seedling and cladode survival in the greenhouse experiments contrasted with that observed in the field, indicating that survival is determined by the interaction between herbivores, plants and abiotic conditions rather than the physiological aptitude of the plants. 相似文献
2 Shading by nurse plants increased seedling survival in the field by an order of magnitude, and a small additional advantage due to predator protection by grasses was observed. Strong herbivory transforms a facultative nurse–protégé relationship for seedlings into an obligatory one.
3 In the greenhouse seedlings grew better under shade, but in the field the production of the first cladode was delayed in seedlings in the more shaded GH. Competition for soil resources may be more intense under a dense grass tussock than under a open shrub, thus affecting the nurse–protégé relationship. Seedling survival under nurse plants was similar in GH and NH, but higher plant cover suggests that a larger number of seedlings will establish in GH in the long term.
4 Cladode survival was higher in NH. Cladodes were more successful than seedlings at establishing in intercanopy areas, possibly due to physiological differences as well as their ability to survive partial predation. Cladode survival in intercanopy areas may explain the enhanced clonal propagation in the more open NH scrubland, together with their susceptibility to the flooding which affects GH.
5 The high seedling and cladode survival in the greenhouse experiments contrasted with that observed in the field, indicating that survival is determined by the interaction between herbivores, plants and abiotic conditions rather than the physiological aptitude of the plants. 相似文献