首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
Phosphatidylglycerol functions as donor of the sn-glycerol 1-phosphate units in the synthesis in vitro of the 1,2-phosphodiester-linked glycerol phosphate backbone of the lipoteichoic acids of Bifidobacterium bifidum subsp. pennsylvanicum. The incorporation was catalysed by a membrane-bound enzyme system. After addition of chloroform/methanol the product formed coprecipitated with protein. The material was phenol-extractable and was co-eluted with purified lipoteichoic acid on Sepharose 6B. The reaction was stimulated by Triton X-100, UDP-glucose and UDP-galactose, but Mg2+ ions had no effect. The apparent values for Km and Vmax. of the phosphatidylglycerol incorporation were 1.4 mM and 3.1 nmol/h per mg of membrane protein, respectively. Labelled UDP-glucose and UDP-galactose were not incorporated into the lipoteichoic acid fraction by the particulate membrane preparation.  相似文献   

2.
The release of lipoteichoic acid and mesosomal vesicles to the supernatant buffer during the formation of spherical, osmotically fragile bodies was studied using Streptococcus faecalis ATCC 9790. Autolytic N-acetylmuramidase action was permitted to take place in exponential-phase cells incubated in a buffer which provides an exceptional degree of osmotic stabilization. Both lipoteichoic acid and mesosomal vesicles were relatively rapidly released to the supernatant buffer. Most of the cellular content of lipoteichoic acid (and mesosomal vesicles) was found in the supernatant buffer at incubation times when the cells still retained over 75% of their cell wall. [14-C]- or [3-H]glycerol was used as a label for both cellular lipoteichoic acids and lipid-glycerol. Glycerol in lipoteichoic acid was quantitated after phenol-water and chloroform-methanol treatments and identified by products of acid hydrolysis and its ability to be precipitated by (i) antibodies specific for the polyglycerol-phosphate backbone, (ii) antibodies to the streptococcal group D antigen, and (iii) concanavalin A. Evidence was obtained that lipoteichoic acid was not associated with isolated mesosomal vesicles. Centrifugation of supernates at 200,000 X g sedimented membranous (mesosomal) vesicles and nearly all of the lipid-glycerol present, whereas essentially all of the lipoteichoic acid remained in the supernatant. The sedimented mesosomal vesicles differed from protoplast membrane in their higher lipid-phosphorus to protein ratio and in the absence of detectable levels of two enzymatic activities found in protoplast membranes, adenosine triphosphatase and polynucleotide phosphorylase. Both types of membranes were found to contain DD-carboxypeptidase and LD-transpeptidase activities at nearly the same specific activities. No evidence was obtained for the association of autolytic N-acetylmuramidase activity with either type of membrane preparation.  相似文献   

3.
Mice injected repeatedly, intraperitoneally or intravenously, for approximately 1 month with a total of 1.04 mg lipoteichoic acid from a nephritogenic strain of Streptococcus pyogenes lost weight. Analysis by electron microscopy revealed that they also exhibited extensive kidney changes in basement membrane morphology which resembled, in part, those observed in human poststreptococcal glomerulonephritis. For example, the glomerular basement membrane became electron dense and exhibited at least a twofold increase in width sporadically within the same preparation after exposure to lipoteichoic acid. Also, whereas appreciable loss or reduction in epithelial foot processes as a result of fusion was clearly evident, epithelial slits and slit membranes or diaphragms between normal foot processes were not selectively affected. In addition, another mostly thickened, highly coiled or serpentinelike basement membrane with amorphous nodules appeared in these preparations. This type membrane was not observed surrounding the capillary lumina and was the most pronounced abnormality apparent in almost all preparations from mice exposed to lipoteichoic acid. Likewise, the proximal tubular basement membrane became variable in width and increased in electron density in mice given lipoteichoic acid as compared with controls. In addition, this membrane was often punctuated with various morphological protrusions originating from only its thickened areas and which extended away from, and not into, the capillary space. This change was only associated with the basement membrane of the proximal tubular capillaries. All membrane changes persisted but gradually subsided, with normal kidney membrane morphology reappearing on the 4th day following the last injection of lipoteichoic acid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Improved preparation of lipoteichoic acids   总被引:32,自引:0,他引:32  
A procedure is described for measuring the extraction of lipoteichoic acids from gram-positive bacteria in absolute terms. Virtually complete extraction was achieved from various bacteria by hot phenol/water if the cells were disrupted. Extraction of whole and delipidated cells and of the membrane fraction gave considerably lower yields. Most of the nucleic acids co-extracted from disrupted cells was removed by treatment with nucleases. Nuclease-resistant nucleic acid, protein, polysaccharide, and teichoic acid were separated from lipoteichoic acid by anionexchange chromatography on DEAE-Sephacel or hydrophobic interaction chromatography on octyl-Sepharose. Purified preparations were essentially free of polymeric contaminants, retained their alanine ester substitution, and were in the sodium salt form. Hydrophobic interaction chromatography also made it possible to recognize contamination of lipoteichoic acid with its deacylated and lyso-form, and to discriminate molecular species containing two and three, or two and four acyl groups.  相似文献   

5.
A ribitol-containing lipoteichoic acid was obtained from the 20,000 x g supernatant fraction of Staphylococcus aureus H by extraction with Triton X-100 followed by fractionation on Sepharose 6B and DEAE-cellulose columns. The purified lipoteichoic acid was composed of phosphate, glycerol, glucose, glucosamine, ribitol, and fatty acids in a molar ratio of 1 : 0.9 : 0.06 : 0.03 : 0.09 : 0.07. Based on the structural analysis of fragments from alkali and HF hydrolysis, the lipoteichoic acid appears to consist of three moieties, namely a ribitol phosphate oligomer, poly(glycerol phosphate) which has about 30 glycerol phosphate units, and beta-glucosyl-beta-glucosyl(1 leads to 1)diacylglycerol. N-Acetylglucosamine was linked to the ribitol residues. The lipoteichoic acid serves as an acceptor of glycosyl moieties from UDP-glucose and UDP-N-acetylglucosamine in the enzyme reaction catalyzed by the membrane preparation. The rate of enzymatic glycosylation was increased by prior treatment of the lipoteichoic acid with N-acetyl-beta-D-glucosaminidase. The glycosylation seems to occur at the ribitol residues of the lipoteichoic acid.  相似文献   

6.
A lipoteichoic acid and a membrane glycolipid were isolated from Bacillus licheniformis 6346 MH-1. The fatty acid composition of the two preparations were similar. Most of the fatty acids were of the branched chain type. The glycolipid was shown to be a diacyl derivative of O-beta-D-glucopyranosyl-(1 leads to 6)-O-beta-D-glucopyranosyl-(1 leads to 3)-glycerol. The lipoteichoic acid contained lipid, polyglycerol phosphate, and glucosamine. The lipid was released by treatment with hydrofluoric acid and by hydrolysis in dilute acid and was shown to have a structure identical with that of the membrane glycolipid.  相似文献   

7.
A competitive ELISA is described for the measurement of lipoteichoic acid. The assay was used to determine the wall associated lipoteichoic acid ofStreptococcus sanguis which was found to represent only 2–4% of the phenol extractable content. Extracellular lipoteichoic acid was detected even after exhaustive cell washing. This material was not the result ofde novo synthesis because membrane de-polarization had no effect on the amount detected. Since extracellular lipoteichoic acid interfered with the measurement of cell surface antigen, cells were fixed with glutaraldehyde prior to assay. Lipoteichoic acid was demonstrated on the surface of fixed cells which did not leak antigen. The relevance of fixation used in antigen location studies by electron microscopy of immune-labelled cells is discussed.  相似文献   

8.
Antisera to lipoteichoic acid of Bifidobacterium bifidum subsp. pennsylvanicum were obtained by injecting lipoteichoic acid/methylated BSA complexes into rabbits. Precipitin tests showed that the glycerol phosphate backbone is primarily responsible for serological specificity while the polysaccharide part of the molecule plays a minor role. Whole cells of B. bifidum subsp. pennsylvanicum were capable of absorbing antibodies, indicating the presence of lipoteichoic acid (14% of the total content) at or near the bacterial surface. Cross-reactivity with strains of the genera Bifidobacterium and Lactobacillus was tested using absorption of antiserum by whole bacteria and reactivity of phenol extracts. The results indicated that lipoteichoic acid is a common antigen within the genus Bifidobacterium. The cross-reactivity with the lactobacilli tested was very low.  相似文献   

9.
The ability of Streptococcus pyogenes lipoteichoic acid and palmitic acid to bind to purified human plasma fibronectin was investigated. Initial studies indicated that intact fibronectin formed soluble complexes with lipoteichoic acid, resulting in a change in the mobility of fibronectin in an electrical field. Fibronectin covalently linked to agarose beads bound radiolabeled lipoteichoic acid in the acylated form but not in the deacylated form. An 18-M excess of fibronectin inhibited binding of lipoteichoic acid to the immobilized protein by 92%. Fibronectin-bound [(3)H]lipoteichoic acid could be specifically eluted with unlabeled lipoteichoic acid, as well as by fatty acid-free serum albumin. Serum albumin, which is known to contain fatty acid-binding sites capable of binding to the lipid moieties of lipoteichoic acid, inhibited the binding of lipoteichoic acid to fibronectin in a competitive fashion. The fibronectin-bound lipoteichoic acid could be eluted by 50% ethanol and various detergents but not by 1.0 M NaCl, various amino acids, or sugars. Similarly, radiolabeled palmitic acid adsorbed to fibronectin could be eluted with 50% ethanol but not with 1.0 M NaCl. Fibronectin adsorbed to a column of palmityl-Sepharose was eluted with 50% ethanol in 0.5% sodium dodecyl sulfate but not with 1.0 M NaCl or 1% sodium dodecyl sulfate alone. The binding of lipoteichoic acid to fibronectin followed first-order kinetics and was saturable. A Scatchard plot analysis of the binding data indicated a heterogeneity of lipoteichoic acid-binding sites similar to that previously found for serum albumin. Nevertheless, fibronectin contains at least one population of high-affinity binding sites for lipoteichoic acid. The binding affinity (nKa approximately 250 muM(-1)) is 2 orders of magnitude greater than the binding affinity of serum albumin. These data suggest that human plasma fibronectin contains specific binding sites for fatty acids and that lipoteichoic acid binds to these sites by way of its glycolipid moiety.  相似文献   

10.
Decreases in electrophoretic mobilities of intracellular lipoteichoic acid, intracellular deacylated lipoteichoic acid, and extracellular deacylated lipoteichoic acid were observed during inhibition of protein synthesis in Streptococcus faecium after exposure to chloramphenicol or valine deprivation. Increased carbohydrate content, and thus an increased mass-to-charge ratio, rather than changes in ester alanine content or novel fatty acid substitutions, appeared to account for the decreased electrophoretic mobilities. The increase in carbohydrate content, as judged from mobility measurements, was progressive over time and appeared to occur on biosynthetically new lipoteichoic acid as well as on lipoteichoic acid made before inhibition of protein synthesis.  相似文献   

11.
We investigated the effects of lipoteichoic acids, surface components of Gram-positive bacteria, on the hemocytes and phenoloxidase activity in last instar Galleria mellonella larvae, as well as the binding of apolipophorin-III, an insect lipid-binding protein, to lipoteichoic acids. Binding of apolipophorin-III to lipoteichoic acid was studied using an assay based on 1,9-dimethylmethylene blue. Apolipophorin-III bound the lipoteichoic acids from Bacillus subtilis, Enterococcus hirae, and Streptococcus pyogenes and to intact cells of E. hirae. E. hirae lipoteichoic acid promoted the binding of apolipophorin-III to the cells of this species. All lipoteichoic acids tested caused a dose- and time-dependent drop in the total counts of hemocytes and, depending on the species of lipoteichoic acid, partial or complete depletion of plasmatocytes. Granulocyte counts were not affected. Apolipophorin-III prevented partially the loss of plasmatocytes due to B. subtilis lipoteichoic acid. All three lipoteichoic acids studied activated phenoloxidase in vitro; injections of B. subtilis lipoteichoic acid into the larvae elevated the phenoloxidase activity, whereas injections of E. hirae or S. pyogenes lipoteichoic acid, or apolipophorin-III alone, suppressed it. Apolipophorin-III decreased the activation of phenoloxidase by B. subtilis lipoteichoic acid.  相似文献   

12.
Hot and cold, 80% aqueous phenol extraction procedures together with an aqueous extraction technique have been evaluated for the isolation of lipoteichoic acids from the cytoplasmic membrane of Gram-positive bacteria. Lipoteichoic acids of Staphylococcus aureusH, Micrococcus 2102, Bacillus subtilis 168, and Bacillus subtilis W-23 were examined as each of them emphasises a different problem of contamination. The purity of the lipoteichoic acids with respect to cell-wall material, nucleic acid, and protein is discussed together with the criteria of purity which enables critical structural analysis of lipoteichoic acids to be carried out.  相似文献   

13.
Gram positive bacteria produce cell envelope macroamphiphile glycopolymers, i.e. lipoteichoic acids or lipoglycans, whose functions and biosynthesis are not yet fully understood. We report for the first time a detailed structure of lipoteichoic acid isolated from a Streptomyces species, i.e. Streptomyces hygroscopicus subsp. hygroscopicus NRRL 2387T. Chemical, MS and NMR analyses revealed a polyglycerolphosphate backbone substituted with α-glucosaminyl and α-N-acetyl-glucosaminyl residues but devoid of any amino-acid substituent. This structure is very close, if not identical, to that of the wall teichoic acid of this organism. These data not only contribute to the growing recognition that lipoteichoic acid is a cell envelope component of gram positive Actinobacteria but also strongly support the recently proposed hypothesis of an overlap between the pathways of lipoteichoic acid and wall teichoic acid synthesis in these bacteria. S. hygroscopicus lipoteichoic acid induced signalling by human innate immune receptor TLR2, confirming its role as a microbe-associated molecular pattern. Its activity was partially dependant on TLR1, TLR6 and CD14. Moreover, it stimulated TNF-α and IL-6 production by a human macrophage cell line to an extent similar to that of Staphylococcus aureus lipoteichoic acid. These results provide new clues on lipoteichoic acid structure/function relationships, most particularly on the role of the polyglycerolphosphate backbone substituents.  相似文献   

14.
Vesicles containing lipoteichoic acid (LTA) have been isolated from Lactobacillus casei ATCC 7469 grown in the presence of either benzylpenicillin or D-cycloserine. These cell wall antibiotics enhanced the rate of LTA and lipid secretion 6.7 times, whereas chloramphenicol inhibited their release. The formation of these vesicles from peripheral and septal wall regions did not appear to be the result of bacteriolysis. The vesicle composition of LTA and lipid was similar to that of the cytoplasmic membrane whereas the protein composition was dissimilar. The size of these vesicles ranged from 20 to 40 nm and the length of LTA ranged from 5 to 50 glycerol phosphate residues. The isolation of these vesicles provides a potential in vitro acceptor system for studying the D-alanylation of lipoteichoic acid.  相似文献   

15.
The cell envelopes of gram-positive bacteria contain structurally diverse membrane-anchored macroamphiphiles (lipoteichoic acids and lipoglycans) whose functions are poorly understood. Since regulation of membrane composition is an important feature of adaptation to life at higher temperatures, we have examined the nature of the macroamphiphiles present in the thermophilic actinomycetes Thermobifida fusca and Rubrobacter xylanophilus. Following hot-phenol-water extraction and purification by hydrophobic interaction chromatography, Western blotting with a monoclonal antibody against lipoteichoic acid strongly suggested the presence of a polyglycerophosphate lipoteichoic acid in T. fusca. This structure was confirmed by chemical and nuclear magnetic resonance analyses, which confirmed that the lipoteichoic acid is substituted with β-glucosyl residues, in common with the teichoic acid of this organism. In contrast, several extraction methods failed to recover significant macroamphiphilic carbohydrate- or phosphate-containing material from R. xylanophilus, suggesting that this actinomycete most likely lacks a membrane-anchored macroamphiphile. The finding of a polyglycerophosphate lipoteichoic acid in T. fusca suggests that lipoteichoic acids may be more widely present in the cell envelopes of actinomycetes than was previously assumed. However, the apparent absence of macroamphiphiles in the cell envelope of R. xylanophilus is highly unusual and suggests that macroamphiphiles may not always be essential for cell envelope homeostasis in gram-positive bacteria.  相似文献   

16.
Pulse-chase experiments with [2-3H]glycerol and [14C]acetate revealed that in Staphylococcus aureus lipoteichoic acid biosynthesis plays a dominant role in membrane lipid metabolism. In the chase, 90% of the glycerophosphate moiety of phosphatidylglycerol was incorporated into the polymer: 25 phosphatidylglycerol + diglucosyldiacylglycerol leads to (glycerophospho)25-diglucosyldiacylglycerol + 25 diacylglycerol. Glycerophosphodiglucosyldiacylglycerol was shown to be an intermediate, confirming that the hydrophilic chain is polymerized on the final lipid anchor. Total phosphatidylglycerol served as the precursor pool and was estimated to turn over more than twice for lipoteichoic acid synthesis in one bacterial doubling. Of the resulting diacylglycerol approximately 10% was used for the synthesis of glycolipids and the lipid anchor of lipoteichoic acid. The majority of diacylglycerol recycled via phosphatidic acid to phosphatidylglycerol. Synthesis of bisphosphatidylglycerol was negligible and only a minor fraction of phosphatidylglycerol passed through the metabolically labile lysyl derivative. In contrast to normal growth, energy deprivation caused an immediate switch-over from the synthesis of lipoteichoic acid to the synthesis of bisphosphatidylglycerol.  相似文献   

17.
The Streptococcus sp. studied here is closely related to Streptococcus pneumoniae with 98.6% 16S rRNA similarity and 65% DNA/DNA homology. We isolated the lipoteichoic acid and the membrane glycolipids whose structures were established using conventional procedures and NMR spectroscopy. The lipoteichoic acid contains a linear 1,3-linked poly(glycerophosphate) chain which is partly substituted with D-alanine ester and is phosphodiester-linked to O6 of beta-D-Galf(1-->3)acyl2Gro. This lipoteichoic acid is the first example in which a monohexosylglycerol serves as the glycolipid anchor; and with an average chain length of 10 glycerophosphate residues it is the shortest known to date. MS analysis, applied for the first time to a native acylated lipoteichoic acid, revealed a continuous increase in chain length from seven to 17 glycerophosphate residues with a maximum at 10, and allowed identification of the fatty acid combinations. Membrane glycolipids consisted of beta-D-Galf(1-->3)acyl2Gro (9%), alpha-D-Glcp(1-->3)acyl2Gro (22%), alpha-D-Galp(1-->2)-alpha-D-Glcp(1-->3)acyl2Gro (64%) and alpha-D-Galp(1-->2)-(6-O-acyl)-alpha-D-Glcp(1-->3)acyl2Gro (5%). It is noteworthy that in lipoteichoic acid biosynthesis, Galfacyl2Gro, a less abundant membrane glycolipid, is selected as the lipid anchor. Despite the genetic relatedness to Streptococcus pneumoniae, the lipoteichoic acid structure is quite different to the complex structure of pneumococcal lipoteichoic acid [T. Behr et al. (1992) Eur. J. Biochem. 207, 1063-1075], thus providing an example that minor differences in DNA sequence exert major changes in macromolecular structure.  相似文献   

18.
Staphylococcus aureus lipoteichoic acid (LTA) is composed of a linear 1,3-linked polyglycerolphosphate chain and is tethered to the bacterial membrane by a glycolipid (diglucosyl-diacylglycerol [Glc2-DAG]). Glc2-DAG is synthesized in the bacterial cytoplasm by YpfP, a processive enzyme that transfers glucose to diacylglycerol (DAG), using UDP-glucose as its substrate. Here we present evidence that the S. aureus alpha-phosphoglucomutase (PgcA) and UTP:alpha-glucose 1-phosphate uridyltransferase (GtaB) homologs are required for the synthesis of Glc2-DAG. LtaA (lipoteichoic acid protein A), a predicted membrane permease whose structural gene is located in an operon with ypfP, is not involved in Glc2-DAG synthesis but is required for synthesis of glycolipid-anchored LTA. Our data suggest a model in which LtaA facilitates the transport of Glc2-DAG from the inner (cytoplasmic) leaflet to the outer leaflet of the plasma membrane, delivering Glc2-DAG as a substrate for LTA synthesis, thereby generating glycolipid-anchored LTA. Glycolipid anchoring of LTA appears to play an important role during infection, as S. aureus variants lacking ltaA display defects in the pathogenesis of animal infections.  相似文献   

19.
Specific degradation of membrane lipoteichoic acid of Streptococcus faecium ATCC 9790 by a phosphodiesterase from Aspergillus niger and by periodate oxidation has demonstrated that the enzymatic synthesis of the glycerol phosphate polymer of the molecule occurs by an external elongation system. Evidence of this type of mechanism was obtained with lipoteichoic acid synthesized in vivo or in vitro by differential radioisotope labeling techniques. The glycerol phosphate repeating units were transferred from phosphatidylglycerol and became linked through a phosphodiester bond to the glycerol phosphate unit of the chain farthest from or most external to the lipid end of the polymer.  相似文献   

20.
Diacylglycerol kinases (DagKs) are key enzymes in lipid metabolism that function to reintroduce diacylglycerol formed from the hydrolysis of phospholipids into the biosynthetic pathway. Bacillus subtilis is a prototypical Gram-positive bacterium with a lipoteichoic acid structure containing repeating units of sn-glycerol-1-P groups derived from phosphatidylglycerol head groups. The B. subtilis homolog of the prokaryotic DagK gene family (dgkA; Pfam01219) was not a DagK but rather was an undecaprenol kinase. The three members of the soluble DagK protein family (Pfam00781) in B. subtilis were tested by complementation of an E. coli dgkA mutant, and only the essential yerQ gene possessed DagK activity. This gene was dubbed dgkB, and the soluble protein product was purified, and its DagK activity was verified in vitro. Conditional inactivation of dgkB led to the accumulation of diacylglycerol and the cessation of lipoteichoic acid formation in B. subtilis. This study identifies a soluble protein encoded by the dgkB (yerQ) gene as an essential kinase in the diacylglycerol cycle that drives lipoteichoic acid production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号