首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An Escherichia coli HF4704S mutant temperature sensitive in deoxyribonucleic acid (DNA) synthesis and different from any previously characterized mutant was isolated. The mutated gene in this strain was designated dnaH. The mutant could grow normally at 27 C but not at 43 C, and DNA synthesis continued for an hour at a decreasing rate and then ceased. After temperature shift-up, the increased amount of DNA was 40 to 50%. When the culture was incubated at 43 C for 70 min and then transferred to 27 C, DNA synthesis resumed after about 50 min, initiating synchronously at a fixed region on the bacterial chromosome. The initiation step in DNA replication sensitive to 30 mug of chloramphenicol per ml occurs synchronously before the resumption of DNA replication after the temperature shift-down, being completed about 30 min before the start of DNA replication. When the cells incubated at 27 C in the presence of 30 mug of chloramphenicol per ml after the temperature shift-down to 27 C were transferred to 43 C with simultaneous removal of the antibiotic, no resumption of DNA replication was observed. When the culture was returned to 43 C after being released from high-temperature inhibition at 30 min before the start of DNA replication, no recovery replication was observed; whereas at 20 min, the recovery of replication was observed. These results indicated that HF4704S was temperature sensitive in the initiation of DNA replication. Analysis of HF4704S, by an interrupted conjugation experiment, indicated that gene dnaH was located at about 64 min on the E. coli C linkage map. In E. coli S1814 (a K-12 derivative), which was a dnaH(ts) transductant from HF4704S (C strain) with phage P1, the mutated gene (dnaH) was demonstrated to be closely linked to the thyA marker by conjugation and P1 transduction experiments and to be distinct from genes dnaA through dnaG.  相似文献   

2.
The nature of the deoxyribonucleic acid synthesis reported by others to occur at 45 degrees C in germinating spores of the temperature-sensitive deoxyribonucleic acid initiation mutant of Bacillus subtilis 168, TsB134, has been investigated. Density transfer experiments, using 5-bromouracil, show that a normal round of replication can occur in a significant fraction of the spore population under such conditions. No repair synthesis is detectable. The possibility raised by this finding, that initiation of the first round of replication during spore outgrowth is unique in that its initiation is determined prior to germination, has been investigated by comparing the behavior of germinating spores of isogenic strains of B. subtilis 168, one carrying and the other without the dnaB (Ts)134 mutation. It is shown that deoxyribonucleic acid synthesis in the Ts strain is very sensitive to temperature in the vicinity of 45 degrees C. At a slightly higher temperature, 49 degrees C, initiation of the first round of replication in the Ts strain is completely (greater than 96%) blocked, but it proceeds normally in the Ts(+) strain. Thus, it is concluded that, after the germination of a spore, the action of the dnaB134 gene product is an obligatory requirement for initiation of the first round of replication. The initiation of replication that can occur in spores of the original TsB134 strain germinating at 45 degrees C is presumably due to incomplete inactivation of the dnaB134 gene product under such conditions.  相似文献   

3.
The influence of sporulation temperature (20, 30 and 37 °C) on the heat resistance and initiation of germination and inactivation by high pressure on Bacillus cereus ATCC 14579 spores was investigated. Spores sporulated at 37 °C were the most heat-resistant. However, spores sporulated at 20 °C were more resistant to the initiation of germination and inactivation by high pressure. Spores were more sensitive to pressure at higher treatment temperatures. At 25 °C, there was an optimum pressure (250 MPa) for the initiation of germination for the three suspensions; at higher temperatures an increase of pressure up to 690 MPa caused progressively more germination. Resistance to the germinability and inactivation by high pressure of the spore population was distributed heterogeneously. Semilogarithmic curves of the ungerminated and survival fraction of B. cereus spores were concave. The resistant fraction of the spore population was lower at higher treatment temperatures. At 60 °C after 30 s of treatment at 690 MPa almost 5 log cycles of the population of B. cereus sporulated at 20 °C was germinated, and more than 7 log cycles of the population of B. cereus sporulated at 30 and 37 °C. The same treatment inactivated 4, 6 and 7 log cycles of the population of B. cereus sporulated at 20, 30 and 37 °C, respectively.  相似文献   

4.
Studies were done to characterize a DNA-negative temperature-sensitive (ts) mutant of human adenovirus type 2, H2 ts111. The temperature-sensitive defect, which was reversible on shift-down in the absence of protein synthesis, was expressed as early as 2 h postinfection, and the results of density-labeling experiments are in agreement with at least a DNA replication initiation block. On shift-up, after allowing viral DNA synthesis at permissive temperatures, the newly synthesized viral DNA and the mature viral DNA were cleaved into fragments which sedimented as a broad peak with a mean coefficient of 10-12S. This cleavage was more marked in the presence of hydroxyurea as the DNA synthesis inhibitor. Parental DNA in infected cells was degraded to a much lesser extent regardless of the incubation temperature. In contrast, the parental DNA was strongly degraded when early gene expression was permitted at 33 degrees C before shift-up to 39.5 degrees C. Furthermore, cellular DNA was also degraded at 39.5 degrees C in ts111-infected cells, the rate of cleavage being related to the multiplicity of infection. This cleavage effect, which did not seem to be related to penton base-associated endonuclease activity, was also enhanced when early gene expression was allowed at 33 degrees C before shift-up. The ts111 defect, which was related to an initiation block and endonucleolytic cleavage of viral and cellular DNA, seemed to correspond to a single mutation. The implication of the ts111 gene product in protection of viral and cellular DNA by way of a DNase-inhibitory function is discussed.  相似文献   

5.
Spore pool glutamic acid as a metabolite in germination   总被引:5,自引:4,他引:5       下载免费PDF全文
Spore glutamic acid pools were examined in dormant and germinating spores using colorimetric and (14)C analytical procedures. Germination of spores of Bacillus megaterium (parent strain), initiated by d-glucose, was accompanied by a rapid drop in the level of spore pool glutamate, from 12.0 mug/mg of dry spores to 7.7 mug/mg of dry spores after 30 sec of germination. Similar decreases in extractable spore pool glutamate were observed with l-alanine-initiated germination of B. licheniformis spores. On the other hand, glutamate pools of mutant spores of B. megaterium, with a requirement of gamma-aminobutyric acid for spore germination, remained unchanged for 9 min of germination, at which time more than 50% of the spore population had germinated. Evidence for conversion of spore pool glutamate to gamma-aminobutyric acid during germination of spores of B. megaterium (parent strain) was obtained.  相似文献   

6.
Isozyme patterns of leucine aminotransferase were studied in connection with glucose transport and DNA synthesis during the activation and deactivation of the transforming gene product in rat kidney cells transformed by one Rous sarcoma virus mutant (which has a temperature-sensitive lesion in its transforming gene. On temperature shift-down of confluent transformed cells grown at 40 degrees C in the presence of fresh serum, isozyme III of leucine aminotransferase appeared in 12--20 h, with increasing amounts from 24 to 48 h. Upon temperature shift-up, isozyme I became the predominant form in these cells within 4 days, the major change occurring within the first 24 h. The rate of protein turnover was similar to the rate of loss of isozymes I and III during temperature shift-down and shift-up, respectively. A stimulation of incorporation of [3H]thymidine into DNA was observed within 8--12 h after temperature shift-down of the transformed cells. For the maintenance of stimulated DNA synthesis for at least 16 h, continued exposure to the permissive temperature is not necessary. Stimulation of glucose transport occurred prior to the stimulation of [3H]thymidine incorporation. The isozymes of leucine aminotransferase also changed during the in vitro differentiation of Yaffee L6A cells in such a way that isozyme I represented the major part of this enzyme in the fused myotube, and isozyme III was more predominant in the less differentiated state (mononucleated cells).  相似文献   

7.
We have isolated a mutant of Baccillus subtilis with a temperature-sensitive lesion in the process of spore germination. The temperature-sensitive mutation affects only germination and outgrowth, and the earliest defect observed is an early block of ribonucleic acid synthesis during germination at 46 C. Upon return to 35 C there is a complete repair of the impaired function, even in the absence of protein synthesis. Protein synthesis inhibition during germination of the mutant spores at 46 C has the effect of increasing the amount of ribonucleic acid made. The temperature-sensitive mutation is located near aroI.  相似文献   

8.
Extraction of Clostridium perfringens type A spores with dithiothreitol (DTT), DTT plus sodium dodecyl sulphate (DTT-SDS), urea-mercaptoethanol (UME), or alkali, solubilized from 18.6 to 46.5 of the total dry weight of spores. The initiation of germination and lysis of such treated spores with lysozyme and an initiation protein (IP) from the culture supernatant fluid of sporulating cells of C. perfringens was studied under various conditions. The ability of lysozyme and the crude IP to induce germination and lysis of extracted spores was concentration dependent up to 0.5 microgram/ml and 5.6 mg/ml respectively. IP showed an optimum of activity between pH 7 and 8 for DTT-SDS and DTT extracted spores, and between pH 6 and 9 for UME extracted spores. The optimum temperature of activity for IP was 55 degrees C. Dissimilarities in the extent to which lysozyme and the IP initiated germination and lysis of spores extracted by various methods may have been a reflection of the differences in amounts of protein solubilized by each treatment.  相似文献   

9.
The cdc30 mutation in the yeast Saccharomyces cerevisiae causes cell cycle arrest late in nuclear division when cells are shifted from the permissive temperature of 25 degrees C to the restrictive temperature of 36.5 degrees C. Cell cycle arrest at 36.5 degrees C is dependent upon the carbon source used: a shift-up in glucose containing media results in cell cycle blockade, whereas a shift-up in ethanol, fructose, glycerol, glycerol plus ethanol, or mannose does not. Metabolite analyses showed accumulation of glucose 6-phosphate in a cdc30-bearing strain after a temperature shift-up in glucose-containing medium. Thermal denaturation studies and kinetic measurements indicate the existence of two isoenzymes of phosphoglucose isomerase (EC 5.3.1.9); one of which is apparently altered in the temperature-sensitive cell cycle mutant. We propose that the gene products of both the CDC30 and PG11 genes are required for cell cycle progression in glucose media and that the PGI1 gene product has a regulatory function over the CDC30 gene product.  相似文献   

10.
Summary When an E. coli mutant (CRT46, dnaA46), thermosensitive in the initiation of DNA replication, grows at intermediate temperatures its DNA/mass ratio is somewhat lower than normal, but the cells possess an excess of initiation capacity, which can be expressed in the absence of proteins synthesis and lead to the accumulation of anomalously high amounts of DNA. A shift-up in temperature causes inhibition of initiation, and at the same time the production of initiation capacity is accelerated. After a shift-down in temperature initiation is released but the production of capacity is inhibited. The initiation capacity is thermolabile.The simplest explanation of these observations is that the dnaA product has a dual role: a positive function as an initiator of replication and a negative control function in its own synthesis.  相似文献   

11.
Initiation of bacterial spore germination   总被引:5,自引:5,他引:0  
To investigate the problem of initiation in bacterial spore germination, we isolated, from extracts of dormant spores of Bacillus cereus strain T and B. licheniformis, a protein that initiated spore germination when added to a suspension of heat-activated spores. The optimal conditions for initiatory activity of this protein (the initiator) were 30 C in 0.01 to 0.04 m NaCl and 0.01 m tris(hydroxymethyl)aminomethane (pH 8.5). The initiator was inhibited by phosphate but required two co-factors, l-alanine (1/7 of K(m) for l-alanine-inhibited germination) and nicotinamide adenine dinucleotide (1.25 x 10(-4)m). In the crude extract, the initiator activity was increased 3.5-fold by heating the extract at 65 C for 10 min, but the partially purified initiator preparation was completely heat-sensitive (65 C for 5 min). Heat stability could be conferred on the purified initiator by adding 10(-3)m dipicolinic acid. A fractionation of this protein that excluded l-alanine dehydrogenase and adenosine deaminase from the initiator activity was developed. The molecular weight of the initiator was estimated as 7 x 10(4). The kinetics of germination in the presence of initiator were examined at various concentrations of l-alanine and nicotinamide adenine dinucleotide.  相似文献   

12.
Escherichia coli K12 cells grown at higher temperatures and then subjected to lower temperatures produce fatty acids with higher unsaturated/saturated ratios than cells completely adapted to the lower temperatures (Okuyama et al. (1982) J. Biol. Chem. 257, 4812-4817). This hyper-response was not an artefact of chloramphenicol treatment and was observed when the shift-down was more than 20 degrees C in the cells grown at either 40 degrees C or 35 degrees C. In contrast, cells grown at either 25 degrees C or 30 degrees C showed no appreciable hyper-response in terms of unsaturated/saturated ratio on temperature shifts to as low as 10 degrees C. By combining shift-down and shift-up experiments, we could show the presence of different types of temperature dependency in the fatty acid-synthesizing systems of cells grown at various temperatures. Contrary to wild-type cells which synthesized mainly cis-vaccenate on down-shift to 10 degrees C, a mutant strain lacking beta-ketoacyl acyl-carrier protein synthase II synthesized more palmitoleate (16:1) and less palmitate at 10 degrees C than at 40 degrees C. The average chain lengths of saturated and unsaturated fatty acids also changed, but differently, between the mutant and wild-type cells on shifts of temperature. Thus, the mutant strain has a temperature-dependent fatty acid-synthesizing system qualitatively different from that seen in a wild-type strain.  相似文献   

13.
Spores from four Frankia strains were isolated and purified to homogeneity. The purified spores were biochemically and physiologically characterized and compared to vegetative cells. Frankia spores exhibited low levels of endogenous respiration that were at least ten-fold lower than the endogenous respiration rate of vegetative cells. The macromolecular content of purified spores and vegetative cells differed. One striking difference among the Frankia spores was their total DNA content. From DAPI staining experiments, only 9% of strain ACN1AG spore population contained DNA. With strains DC12 and EuI1c, 92% and 67% of their spore population contained DNA. The efficiency of spore germination was correlated to the percentage of the spore population containing DNA. These results suggest that the majority of strain ACN1AG spores were immature or nonviable. The presence of a solidifying agent inhibited the initial stages of spore germination, but had no effect once the process had been initiated. The optimal incubation temperature for spore germination was 25°C and 30°C for strains DC12 and EuI1c, respectively. A mild heat shock increased the efficiency of spore germination, while root extracts also stimulated spore germination. These results suggest that strains DC12 and EuI1c may be suitable strains for further germination and genetic studies.  相似文献   

14.
The optimum temperature for growth and sporulation of Colletotrichum gloeosporioides from Hevea brasiliensis was between 26 and 32 oC, whereas spore germination exceeded 90% between 21.5 and 30.5 oC. Germination decreased in culture after 3 days, and on exposure of spores to sunlight or oven heat (46 oC) for 10 min. Spore viability and germination were sensitive to atmospheric humidity; at 99% r.h. germination was half that at 100% r.h. and was negligible below 97% r.h. Germination decreased by up to 30% after 3 h storage at 80% r.h. Continuous light favoured spore production in vitro, but spores produced in the dark had a higher percentage germination. No differences were detected between the numbers of spores germinating on leaves of different ages, although there were slightly more on susceptible cultivars and in the presence of extracts of uninfected susceptible leaves. Extracts from, infected leaves depressed spore germination, as did concentrations above 5 times 105 spores/ml. The highest % germination was observed when naturally infected leaves were dry-stored for up to 20 days and then incubated for 2 days in a moist chamber.  相似文献   

15.
The germination of the spores of Thermoactinomyces vulgaris formed on a complex medium is stimulated by suspending them in solutions containing Mg2+ and Ca2+ ions. The stimulation is not the result of the initiation of the spores in the presence of the ions since the experiments were carried out at a temperature of 20 degrees C at which the initiation did not virtually take place. The ions of Na+ and K+ have almost no effect on the germination of the spores. The fraction of the resting spores of Thermoactinomyces vulgaris depends on the composition of the growth medium, especially on its amino acid composition. The addition of Mg2+ and Ca2+ ions to a minimal synthetic growth medium stimulates the growth of the cultures and decreases the dormancy of the spores. The spores formed on the synthetic medium are less thermostable than the spores formed on the complex medium. Thermostability of the spores increases upon the addition of Mg2+ to the synthetic medium. Spore suspensions obtained on the synthetic medium with Mg2+ or Ca2+ are initiated more completely than spore suspensions obtained on the complex medium.  相似文献   

16.
17.
L Wu  N E Welker 《Journal of bacteriology》1991,173(15):4889-4892
Cultures of Bacillus stearothermophilus subjected to a temperature shift-up or shift-down of 15 degrees C within the normal temperature range of growth (45 to 65 degrees C) enter a transient adaptation period before exponential growth at the new temperature. The de novo synthesis of some proteins coincides with the adaptation period.  相似文献   

18.
Temperature-sensitive mutants of herpes simplex virus type 1 representing eight DNA-negative complementation groups were grouped into the following three categories based on the viral DNA synthesis patterns after shift-up from the permissive to the nonpermissive temperature and after shift-down from the nonpermissive to the permissive temperature in the presence and absence of inhibitors of RNA and protein synthesis. (i) Viral DNA synthesis was inhibited after shift-up in cells infected with tsB, tsH, and tsJ. After shift-down, tsB- and tsH-infected cells synthesized viral DNA in the absence of de novo RNA and protein synthesis whereas tsJ-infected cells synthesized no viral DNA in the absence of protein synthesis. The B, H, and J proteins appear to be continuously required for the synthesis of viral DNA. (ii) Viral DNA synthesis continued after shift-up in cells infected with tsD and tsK whereas no viral DNA was synthesized after shift-down in the absence of RNA and protein synthesis. Mutants tsD and tsK appear to be defective in early regulatory functions. (iii) Cells infected with tsL, tsS, and tsU synthesized viral DNA after shift-up and after shift-down in the absence of RNA and protein synthesis. The functions of the L, S, and U proteins cannot yet be determined.  相似文献   

19.
Vegetative cells carrying the new temperature-sensitive mutation cdc40 arrest at the restrictive temperature with a medial nuclear division phenotype. DNA replication is observed under these conditions, but most cells remain sensitive to hydroxyurea and do not complete the ongoing cell cycle if the drug is present during release from the temperature block. It is suggested that the cdc40 lesion affects an essential function in DNA synthesis. Normal meiosis is observed at the permissive temperature in cdc40 homozygotes. At the restrictive temperature, a full round of premeiotic DNA replication is observed, but neither commitment to recombination nor later meiotic events occur. Meiotic cells that are already committed to the recombination process at the permissive temperature do not complete it if transferred to the restrictive temperature before recombination is realized. These temperature shift-up experiments demonstrate that the CDC40 function is required for the completion of recombination events, as well as for the earlier stage of recombination commitment. Temperature shift-down experiments with cdc40 homozygotes suggest that meiotic segregation depends on the final events of recombination rather than on commitment to recombination.  相似文献   

20.
The exudate of fully germinated spores of Clostridium perfringens was found to contain a large amount of a spore lytic enzyme which acted directly on alkali-treated spores of the organism to cause germination. Although no detectable amount of the enzyme was found in dormant spores during germination in a KCl medium, the enzyme was produced rapidly and released into the medium. The optimal conditions for enzyme activity were pH 6.0 and 45 degrees C. Maximum activity occurred in the presence of various univalent cations at a concentration of 50 mM. The enzyme was readily inactivated by several sulfhydryl reagents. A strong reducing condition was generated in the ionic germination of the spores, a minimum Eh level of -350 mV being reached 30 min after initiation of germination. Furthermore, adenosine triphosphate-dependent pyruvate:ferredoxin oxidoreductase (EC 1.2.7.1) was identified in both dorman and germinated spores. The relationship between the release of active enzyme and the generation of reducing conditions during germination is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号