首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nickas ME  Neiman AM 《Genetics》2002,160(4):1439-1450
Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Delta/ady3Delta asci that do form contain fewer than four spores. The sporulation defect in ady3Delta/ady3Delta cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Delta/ady3Delta cells. In mpc70Delta/mpc70Delta cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.  相似文献   

2.
During meiosis II in the yeast Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body changes from a site of microtubule initiation to a site of de novo membrane formation. These membranes are required to package the haploid meiotic products into spores. This functional change in the spindle pole body involves the expansion and modification of its cytoplasmic face, termed the outer plaque. We report here that SPO21 is required for this modification. The Spo21 protein localizes to the spindle pole in meiotic cells. In the absence of SPO21 the structure of the outer plaque is abnormal, and prospore membranes do not form. Further, decreased dosage of SPO21 leaves only two of the four spindle pole bodies competent to generate membranes. Mutation of CNM67, encoding a known component of the mitotic outer plaque, also results in a meiotic outer plaque defect but does not block membrane formation, suggesting that Spo21p may play a direct role in initiating membrane formation.  相似文献   

3.
During sporulation and meiosis of budding yeast a developmental program determines the formation of the new plasma membranes of the spores. This process of prospore membrane (PSM) formation leads to the formation of meiotic daughter cells, the spores, within the lumen of the mother cell. It is initiated at the spindle pole bodies during meiosis II. Spore formation, but not meiotic cell cycle progression, requires the function of phospholipase D (PLD/Spo14). Here we show that PLD/Spo14 forms a complex with Sma1, a meiotically expressed protein essential for spore formation. Detailed analysis revealed that both proteins are required for early steps of prospore membrane assembly but with distinct defects in the respective mutants. In the Deltaspo14 mutant the initiation of PSM formation is blocked and aggregated vesicles of homogenous size are detected at the spindle pole bodies. In contrast, initiation of PSM formation does occur in the Deltasma1 mutant, but the enlargement of the membrane is impaired. During PSM growth both Spo14 and Sma1 localize to the membrane, and localization of Spo14 is independent of Sma1. Biochemical analysis revealed that Sma1 is not necessary for PLD activity per se and that PLD present in a complex with Sma1 is highly active. Together, our results suggest that yeast PLD is involved in two distinct but essential steps during the regulated vesicle fusion necessary for the assembly of the membranous encapsulations of the spores.  相似文献   

4.
5.
Sporulation in yeast requires that a modified form of chromosome segregation be coupled to the development of a specialized cell type, a process akin to gametogenesis. Mps1p is a dual-specificity protein kinase essential for spindle pole body (SPB) duplication and required for the spindle assembly checkpoint in mitotically dividing cells. Four conditional mutant alleles of MPS1 disrupt sporulation, producing two distinct phenotypic classes. Class I alleles of mps1 prevent SPB duplication at the restrictive temperature without affecting premeiotic DNA synthesis and recombination. Class II MPS1 alleles progress through both meiotic divisions in 30-50% of the population, but the asci are incapable of forming mature spores. Although mutations in many other genes block spore wall formation, the cells produce viable haploid progeny, whereas mps1 class II spores are unable to germinate. We have used fluorescently marked chromosomes to demonstrate that mps1 mutant cells have a dramatically increased frequency of chromosome missegregation, suggesting that loss of viability is due to a defect in spindle function. Overall, our cytological data suggest that MPS1 is required for meiotic SPB duplication, chromosome segregation, and spore wall formation.  相似文献   

6.
Spore formation in Saccharomyces cerevisiae occurs via the de novo synthesis of the prospore membrane during the second meiotic division. Prospore membrane formation is triggered by assembly of a membrane-organizing center, the meiotic outer plaque (MOP), on the cytoplasmic face of the spindle pole body (SPB) during meiosis. We report here the identification of two new components of the MOP, Ady4p and Spo74p. Ady4p and Spo74p interact with known proteins of the MOP and are localized to the outer plaque of the SPB during meiosis II. MOP assembly and prospore membrane formation are abolished in spo74Δ/spo74Δ cells and occur aberrantly in ady4Δ/ady4Δ cells. Spo74p and the MOP component Mpc70p are mutually dependent for recruitment to SPBs during meiosis. In contrast, both Ady4p and Spo74p are present at SPBs, albeit at reduced levels, in cells that lack the MOP component Mpc54p. Our findings suggest a model for the assembled MOP in which Mpc54p, Mpc70p, and Spo74p make up a core structural unit of the scaffold that initiates synthesis of the prospore membrane, and Ady4p is an auxiliary component that stabilizes the plaque.  相似文献   

7.
Meiotic recombination requires pairing of homologous chromosomes, the mechanisms of which remain largely unknown. When pairing occurs during meiotic prophase in fission yeast, the nucleus oscillates between the cell poles driven by astral microtubules. During these oscillations, the telomeres are clustered at the spindle pole body (SPB), located at the leading edge of the moving nucleus and the rest of each chromosome dangles behind. Here, we show that the oscillatory nuclear movement of meiotic prophase is dependent on cytoplasmic dynein. We have cloned the gene encoding a cytoplasmic dynein heavy chain of fission yeast. Most of the cells disrupted for the gene show no gross defect during mitosis and complete meiosis to form four viable spores, but they lack the nuclear movements of meiotic prophase. Thus, the dynein heavy chain is required for these oscillatory movements. Consistent with its essential role in such nuclear movement, dynein heavy chain tagged with green fluorescent protein (GFP) is localized at astral microtubules and the SPB during the movements. In dynein-disrupted cells, meiotic recombination is significantly reduced, indicating that the dynein function is also required for efficient meiotic recombination. In accordance with the reduced recombination, which leads to reduced crossing over, chromosome missegregation is increased in the mutant. Moreover, both the formation of a single cluster of centromeres and the colocalization of homologous regions on a pair of homologous chromosomes are significantly inhibited in the mutant. These results strongly suggest that the dynein-driven nuclear movements of meiotic prophase are necessary for efficient pairing of homologous chromosomes in fission yeast, which in turn promotes efficient meiotic recombination.  相似文献   

8.
Li J  Agarwal S  Roeder GS 《Genetics》2007,175(1):143-154
Spore formation in Saccharomyces cerevisiae requires the synthesis of prospore membranes (PSMs) followed by the assembly of spore walls (SWs). We have characterized extensively the phenotypes of mutants in the sporulation-specific genes, SSP2 and OSW1, which are required for spore formation. A striking feature of the osw1 phenotype is asynchrony of spore development, with some spores displaying defects in PSM formation and others spores in the same ascus blocked at various stages in SW development. The Osw1 protein localizes to spindle pole bodies (SPBs) during meiotic nuclear division and subsequently to PSMs/SWs. We propose that Osw1 performs a regulatory function required to coordinate the different stages of spore morphogenesis. In the ssp2 mutant, nuclei are surrounded by PSMs and SWs; however, PSMs and SWs often also encapsulate anucleate bodies both inside and outside of spores. In addition, the SW is not as thick as in wild type. The ssp2 mutant defect is partially suppressed by overproduction of either Spo14 or Sso1, both of which promote the fusion of vesicles at the outer plaque of the SPB early in PSM formation. We propose that Ssp2 plays a role in vesicle fusion during PSM formation.  相似文献   

9.
Morishita M  Engebrecht J 《Genetics》2005,170(4):1561-1574
During sporulation in Saccharomyces cerevisiae, vesicles transported to the vicinity of spindle pole bodies are fused to each other to generate bilayered prospore membranes (PSMs). PSMs encapsulate the haploid nuclei that arise from the meiotic divisions and serve as platforms for spore wall deposition. Membrane trafficking plays an important role in supplying vesicles for these processes. The endocytosis-deficient mutant, end3Delta, sporulated poorly and the spores produced lost resistance to ether vapor, suggesting that END3-mediated endocytosis is important for sporulation. End3p-GFP localized to cell and spore peripheries in vegetative and sporulating cells and colocalized with actin structures. Correspondingly, the actin cytoskeleton appeared aberrant during sporulation in end3Delta. Analysis of meiosis in end3Delta mutants revealed that the meiotic divisions occurred with wild-type kinetics. Furthermore, PSMs were assembled normally. However, the levels of proteins required for spore wall synthesis and components of the spore wall layers at spores were reduced, indicating that end3Delta mutants are defective in spore wall synthesis. Thus, END3-mediated endocytosis is important for spore wall formation. Additionally, cytological analyses suggest that trafficking between the plasma membrane and PSMs is important earlier during sporulation.  相似文献   

10.
During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.  相似文献   

11.
During meiosis in Saccharomyces cerevisiae four daughter cells, called spores, are generated within the boundaries of the mother cell. This cell differentiation process requires de novo synthesis of prospore membranes (PSMs), which are the precursors of the spore plasma membranes. Assembly of these membranes is initiated at the spindle pole bodies (SPBs) during meiosis II. At this stage of the cell cycle, 4 SPBs are present. Two different meiosis-specific structures are known to be required for PSM formation. At the SPBs, specialized attachments, called the meiotic plaques, provide the required functionality necessary for the recruitment and assembly of the membranes. During subsequent membrane elongation, a second structure becomes important. This proteinaceous assembly forms a coat, called the leading edge protein coat (LEP coat), which covers the boundaries of the membranes. Assembly of the coat occurs at sites next to the SPBs, whereas its disassembly is concomitant to the closure of the membranes. This mini review discusses our current understanding of how the meiotic plaque and the LEP coat might function during biogenesis of the prospore membrane.  相似文献   

12.
Davidow LS  Goetsch L  Byers B 《Genetics》1980,94(3):581-595
Yeast cells subjected to a reversible thermal arrest of meiosis yielded progressively fewer spores per ascus as the arrest was extended. Dissection of two-spored asci by a newly developed method that prevents selection of false asci revealed that the spores were not a random sample of the haploid meiotic products. Most, if not all, pairs of spores contain nonsister products of the reductional division. Electron microscopic examination of the meiotic cells revealed the cytological basis for this bias. All four spindle pole bodies (SPBs) present at the second meiotic division normally gain a structural modification (the outer plaque) upon which the initiation of the prospore wall occurs. In the formation of a two-spored ascus, only one spindle pole body on each meiosis II spindle was so modified. These observations suggest that the morphogenesis of spores is regulated at meiosis II by limiting the number of SPBs gaining the outer plaque. The enhancement of spore yield upon addition of fresh medium suggests that this morphogenetic regulation responds more directly to nutrient deprivation arising during the thermal arrest, rather than to elevated temperature per se.  相似文献   

13.
Vesicular traffic is essential for sporulation in Saccharomyces cerevisiae. The Golgi-associated retrograde protein (GARP) tethering complex is required for retrograde traffic from both the early and late endosomes to the Golgi. Analyses of GARP complex mutants in sporulation reveal defects in meiotic progression and spore formation. In contrast, inactivation of the retromer complex, which mediates vesicle budding and cargo selection from the late endosome, or Snx4p, which is involved in retrieval of proteins from the early endosome, has little effect on sporulation. A retromer GARP double mutant is defective in the formation of the prospore membrane (PSM) that surrounds the haploid nuclei. In the retromer GARP double mutant, PSM precursor vesicles carrying the cargo, Dtr1p, are transported to the spindle pole body (SPB), where PSM formation is initiated. However, the v-SNARE Snc1p is not transported to the SPB in the double mutant, suggesting that the defect in PSM formation is because of the failure to retrieve Snc1p, and perhaps other proteins, from the endosomal pathway. Taken together, these results indicate that retrograde trafficking from the endosome is essential for sporulation by retrieving molecules important for PSM and spore wall formation.  相似文献   

14.
In the yeast Saccharomyces cerevisiae, SPC42 is an essential gene, which encodes one of the major components of the spindle pole body (SPB). We report on a mutation in the SPC42 gene (spc42-102) that results in a sporulation-specific defect. Mitotic growth of haploid and diploid spc42-102 strains is normal and both exhibit the same growth rates as the isogenic wild-type strains. Many diploid spc42-102/spc42-102 cells undergo normal meiotic nuclear divisions, producing four haploid nuclei. However, a significant fraction of meiotic spc42-102/spc42-102 cells contain two immature SPBs and aberrant nuclei that are not surrounded by a prospore membrane. Some 40% of the resultant asci contain only two spores, while wild-type diploid cells almost always produce four-spored asci. Segregation of auxotrophic markers that are tightly linked to the centromere reveals that two-spore asci formed from spc42-102/spc42-102 diploid cells exclusively contain nonsister haploid spores. Western analysis and measurements of the fluorescent signal from an Spc42p-GFP (green fluorescent protein) fusion reveal that the mutant strain fails to accumulate Spc42p at meiosis. Thus, our results suggest that insufficiency of Spc42p during meiosis results in a pair of immature nonsister SPBs that are not enclosed by prospore membrane.  相似文献   

15.
Meiotic oocytes lack classic centrosomes; therefore, bipolar spindle assembly depends on the clustering of acentriolar microtubule‐organizing centers (MTOCs) into two poles. The bipolar spindle is an essential cellular component that ensures accurate chromosome segregation during anaphase. If the spindle does not form properly, it can result in aneuploidy or cell death. However, the molecular mechanism by which the bipolar spindle is established is not yet fully understood. Tumor suppressor p53‐binding protein 1 (TP53BP1) is known to mediate the DNA damage response. Several recent studies have indicated that TP53BP1 has noncanonical roles in processes, such as spindle formation; however, the role of TP53BP1 in oocyte meiosis is currently unclear. Our results show that TP53BP1 knockdown affects spindle bipolarity and chromatin alignment by altering MTOC stability during oocyte maturation. TP53BP1 was localized in the cytoplasm and displayed an irregular cloud pattern around the spindle/chromosome region. TP53BP1 was also required for the correct localization of MTOCs into the two spindle poles during pro‐meiosis I. TP53BP1 deletion altered the MTOC‐localized Aurora Kinase A. TP53BP1 knockdown caused the microtubules to detach from the kinetochores and increased the rate of aneuploidy. Taken together, our data show that TP53BP1 plays crucial roles in chromosome stability and spindle bipolarity during meiotic maturation.  相似文献   

16.
Knop M  Strasser K 《The EMBO journal》2000,19(14):3657-3667
Spindle pole bodies (SPBs) are the centrosome equivalents in yeast, required for microtubule organization. In yeast, the SPB further serves as the attachment sites of the prospore membrane during meiosis. Here we report the identification of two new meiosis-specific components of the SPB, Mpc54p and Mpc70p, and the first protein specific for the prospore membrane, Don1p. Mpc54p and Mpc70p are not present in mitotic SPBs, and during meiosis II they are components of a meiosis-specific structural alteration of the outer plaque of the SPB. Both proteins are dispensable for the meiotic divisions but are essentially required for the formation of the prospore membrane. In the mpc54 and mpc70 mutants, the Don1p-containing precursors of the prospore membrane can still be found in the cytoplasm and associated with the SPB. Unexpectedly, however, the assembly of the precursors to a continuous membrane system is affected. Thus, the meiotic SPB is directly involved in the formation of a specialized membrane system, the membrane of the prospore.  相似文献   

17.
Astrin has been described as a microtubule and kinetochore protein required for the maintenance of sister chromatid cohesion and centrosome integrity in human mitosis. However, its role in mammalian oocyte meiosis is unclear. In this study, we find that Astrin is mainly associated with the meiotic spindle microtubules and concentrated on spindle poles at metaphase I and metaphase II stages. Taxol treatment and immunoprecipitation show that Astrin may interact with the centrosomal proteins Aurora-A or Plk1 to regulate microtubule organization and spindle pole integrity. Loss-of-function of Astrin by RNAi and overexpression of Tof the coiled-coil domain results in spindle disorganization, chromosome misalignment and meiosis progression arrestT. Thr24, Ser66 or Ser447 may be the potential phosphorylated sites of Astrin by Plk1, as site-directed mutation of these sites causes oocyte meiotic arrest at HTmetaphaseTH I with highly disordered spindles and disorganized chromosomes, although mutant Astrin localizes to the spindle apparatus. Taken together, these data strongly suggest that Astrin is critical for meiotic spindle assembly and maturation in mouse oocytes.  相似文献   

18.
Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB.  相似文献   

19.
In Aspergillus nidulans, cytoplasmic dynein and NUDF/LIS1 are found at the spindle poles during mitosis, but they seem to be targeted to this location via different mechanisms. The spindle pole localization of cytoplasmic dynein requires the function of the anaphase-promoting complex (APC), whereas that of NUDF does not. Moreover, although NUDF's localization to the spindle poles does not require a fully functional dynein motor, the function of NUDF is important for cytoplasmic dynein's targeting to the spindle poles. Interestingly, a gamma-tubulin mutation, mipAR63, nearly eliminates the localization of cytoplasmic dynein to the spindle poles, but it has no apparent effect on NUDF's spindle pole localization. Live cell analysis of the mipAR63 mutant revealed a defect in chromosome separation accompanied by unscheduled spindle elongation before the completion of anaphase A, suggesting that gamma-tubulin may recruit regulatory proteins to the spindle poles for mitotic progression. In A. nidulans, dynein is not apparently required for mitotic progression. In the presence of a low amount of benomyl, a microtubule-depolymerizing agent, however, a dynein mutant diploid strain exhibits a more pronounced chromosome loss phenotype than the control, indicating that cytoplasmic dynein plays a role in chromosome segregation.  相似文献   

20.
Cdc28p is the major cyclin-dependent kinase in Saccharomyces cerevisiae. Its activity is required for blocking the reinitiation of DNA replication during mitosis. Here, we show that under conditions where Cdc28p activity is improperly regulated--either through the loss of function of the Schizosaccharomyces pombe wee1 ortholog Swe1p or through the expression of a dominant CDC28 allele, CDC28AF--diploid yeast cells are able to complete several rounds of premeiotic DNA replication within a single meiotic cell cycle. Moreover, a percentage of mutant cells exhibit a "multispore" phenotype, possessing the ability to package more than four spores within a single ascus. These multispored asci contain both even and odd numbers of viable spores. In order for meiotic rereplication and multispore formation to occur, cells must initiate homologous recombination and maintain proper chromosome cohesion during meiosis I. Rad9p- or Rad17p-dependent checkpoint mechanisms are not required for multispore formation and neither are the B-type cyclin Clb6p and the cyclin-dependent kinase inhibitor Sic1p. Finally, we present evidence of a possible role for a Cdc55p-dependent protein phosphatase 2A in initiating meiotic replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号