首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Comment on: Geserick P, et al. J Cell Biol 2009; 187:1037-54.  相似文献   

2.
Apoptosis (programmed cell death) is common to all multicellular organisms. Apoptosis plays a central role in cell differentiation, removal of damaged cells, and the homeostasis of the immune system. There are two apoptosis signal pathways: the extrinsic (transmitted through death receptors (DR)) or the intrinsic (mitochondrial) death pathways. A death receptor, CD95 (Fas/APO-1), was discovered 20 years ago. This review is focused on the mechanisms of death receptor-induced apoptosis via CD95 (Fas/APO-1)-mediated apoptosis and the role of the antiapoptotic protein c-FLIP in the extrinsic apoptosis regulation. The regulation of this pathway is crucial for the immune system. Defects in the regulation of CD95-mediated result in serious diseases such as cancer, autoimmunity, and AIDS. Therefore, gaining insights into apoptosis will have wide implications for developing approaches to treatment strategies of these diseases.  相似文献   

3.
Over the past twenty years, intensive research has enabled us to identify components of specific signalling pathways downstream of an array of adhesion and growth-factor receptors. The first Gordon Research Conference on 'Signalling by Adhesion Receptors', which took place in Newport, Rhode Island, USA (23-28 July 2000), focused on these findings.  相似文献   

4.
5.
Expression of CD95 ligand on parenchymal, epithelial, or tumor cells has been suggested to downregulate the immune response and to control lymphocyte activation. Suppression might be mediated by induction of apoptosis or by inhibition of Ca(2+) channels upon CD95 triggering. We, therefore, aimed to employ this model to modify the immune response to an antigen presented to cytotoxic T cells by antigen-presenting MC57 cells. This model would be very useful to specifically downregulate the immune response to autoantigens in autoimmune situations. However, cytotoxic T cell lines tested in the present study were resistant to CD95 ligand expression on antigen-presenting MC57 cells. In addition, coincubation of the lymphocytes with antigen presenting cells failed to block cytotoxicity mediated by the T lymphocytes. We, therefore, conclude that single expression of CD95 ligand on antigen-presenting cells is insufficient to specifically downregulate an immune response by CD8(+-)triggered immune response.  相似文献   

6.

Background

Upon CD95/Fas ligation, the initiator caspase-8 is known to activate effector caspases leading to apoptosis. In the presence of zVAD-fmk, a broad-spectrum caspase inhibitor, Fas engagement can also trigger an alternative, non-apoptotic caspase-independent form of cell death, which is initiated by RIP1. Controversy exists as to the ability of caspase-10 to mediate cell death in response to FasL (CD95L or CD178). Herein, the role of caspase-10 in FasL-induced cell death has been re-evaluated.

Methodology and Principal Findings

The present study shows that FasL-induced cell death was completely impaired in caspase-8- and caspase-10-doubly deficient (I9-2e) Jurkat leukaemia T-cell lines. Over-expressing of either caspase-8 or caspase-10 in I9-2e cells triggered cell death and restored sensitivity to FasL, further arguing for a role of both initiator caspases in Fas apoptotic signalling. In the presence of zVAD-fmk, FasL triggered an alternative form of cell death similarly in wild-type (A3) and in caspase-8-deficient Jurkat cells expressing endogenous caspase-10 (clone I9-2d). Cell death initiated by Fas stimulation in the presence of zVAD-fmk was abrogated in I9-2e cells as well as in HeLa cells, which did not express endogenous caspase-10, indicating that caspase-10 somewhat participates in this alternative form of cell death. Noteworthy, ectopic expression of caspase-10 in I9-2e and HeLa cells restored the ability of FasL to trigger cell death in the presence of zVAD-fmk. As a matter of fact, FasL-triggered caspase-10 processing still occurred in the presence of zVAD-fmk.

Conclusions and Significance

Altogether, these data provide genetic evidence for the involvement of initiator caspase-10 in FasL-induced cell death and indicate that zVAD-fmk does not abrogate caspase-10 processing and cytotoxicity in Fas signalling. Our study also questions the existence of an alternative caspase-independent cell death pathway in Fas signalling.  相似文献   

7.
Signalling by semaphorin receptors: cell guidance and beyond   总被引:13,自引:0,他引:13  
Semaphorins are a large family of secreted or cell-bound signals, known to guide axons in developing nervous tissue. They are expressed in a variety of adult and embryonic tissues and are thought to have a broader spectrum of functions. Recent evidence suggests that semaphorins and their receptors play a key role in the control of cellular interactions, most likely in cell-cell repulsion. A subset of semaphorins interacts with neuropilins - cell-surface molecules lacking a signalling-competent cytoplasmic domain. Another large family of transmembrane molecules, namely plexins, bind specifically to semaphorins. Thus plexins, alone, or in association with neuropilins, behave as fully functional semaphorin receptors. The intracellular responses elicited by plexins are unknown, but their large cytoplasmic moiety, containing the strikingly conserved sex-plexin (SP) domain, is likely to trigger novel signal-transduction pathways.  相似文献   

8.
Tumor necrosis factors(TNFs) are a group of cytokines that play critical roles in regulating a diverse range of physiological processes in vertebrates. TNFs function by activating a large number of structurally related receptors, leading to TNF mediated biological processes which are evolutionarily conserved. Fish have a much diversified TNF family, partly due to the whole genome duplication events which have occurred in this lineage, providing an excellent model to investigate the neo-and subfunctionalised properties of TNF superfamily. Fish possess most of the TNFs and receptors found in mammals and also some homologues exclusively present in fish. It seems that TNFSF4(OX40), TNFSF7(CD27) and TNFSF8(CD30) and their cognate receptors are absent in teleosts. It has been shown that fish viruses are able to produce TNFR homologues to establish infection by manipulating the host immune system. Understanding the roles of TNFSFs in fish immune defence and the pathogenesis of fish diseases will provide insights into the functions of TNFSFs from an evolutionary perspective and better strategies for improving fish health and welfare in aquaculture. This review summarises recent advances in the study of fish TNF biology and focuses on the molecular properties and immunological functions of the TNF and TNFR superfamily.  相似文献   

9.
CD95/CD95L interactions are vital to normal lymphoid homeostasis and in the protection against autoimmunity. To directly assess the effects of CD95L on activated B cell survival and Ig responses, purified human peripheral blood B cells, activated in vitro with SAC + rIL2, were incubated with a soluble CD95L fusion protein (fp) and assayed for apoptosis and IgG/IgM production. CD95L fp reproducibly increased apoptosis of these activated B cells and inhibited their Ig production. However, CD95L fp-mediated effects on activated B cell survival could be uncoupled from those on Ig production in that a soluble CD40L fp was incapable of reversing CD95L fp-mediated downregulation of Ig responses despite inhibiting CD95L fp-mediated apoptosis. Moreover, despite the specific caspase-8 inhibitor z-IETD-fmk substantially protecting transformed CL-01 B cells from CD95L fp-mediated apoptosis and permitting their ongoing proliferation, caspase-8 inhibition had no protective effects on CD95L fp-mediated inhibition of constitutive IgM production by CL-01 B cells. Collectively, these results point to a CD95-based downregulatory pathway in activated B cells that need not necessarily culminate in their death.  相似文献   

10.
Kenny EF  O'Neill LA 《Cytokine》2008,43(3):342-349
Research into the five Toll/IL1 receptor (TIR) adaptor proteins involved in innate immunity continues to advance. Here we outline some of the more recent findings. MyD88 has a key role in signalling by the IL1 receptor complex and TLRs. However, a MyD88-independent pathway of IL1beta signalling in neurons has been described which involves the protein kinase Akt, and which has an anti-apoptotic effect. This pathway may also be important for the mechanism whereby Alum exerts its adjuvant effect since this depends on IL1beta but is MyD88-independent. MyD88 is also involved in tumourigenesis in models of hepatocarcinoma and familial associated polyposis (FAP); negative regulation of TLR3 signalling and in PKCepsilon activation. The adaptor Mal is regulated by phosphorylation and caspase-1 cleavage. A variant form of Mal in humans termed S180L confers protection in multiple infectious diseases. TRAM is controlled by myristoylation and phosphorylation and the localisation of TRAM with TLR4 to endosomes is required for activation of IRF3 and induction of IFNbeta. Finally SARM has been shown to regulate TRIF and also appears to be involved in neuronal injury mediated by oxidative stress in mouse neurons. These advances confirm the importance for the TIR domain-containing adapters in host defence and inflammation.  相似文献   

11.
12.
Stroke is the third most common cause of death in the Western world. The mechanisms of brain damage in the affected areas are largely unknown. Hence, rational treatment strategies are limited. Previous experimental evidence suggested that cerebral lesions were less prominent in CD95 (APO-1/Fas)-deficient (lpr) than in wild-type mice. Additional results strongly suggested that the CD95-ligand (CD95L) was a major cause of neuronal autocrine suicide in the penumbra. These data and the assumption that death-receptor systems might determine stroke-related damage in the brain prompted us to examine these systems in in vitro and in vivo models of ischemia. We showed that hybrids of TNF-deficient and gld mice were strongly resistant towards stroke-induced damage. To determine the mechanism of action of TNF and CD95L, we separately investigated their influence on primary ischemic death and secondary inflammatory injury. Inhibition of both TNF and CD95L in vitro prevented death of primary neurons induced by oxygen-glucose deprivation and reperfusion. The recruitment of inflammatory cells to the ischemic hemisphere was abrogated in the absence of both TNF and CD95L. Significantly, mice injected with a mixture of neutralizing anti-TNF and anti-CD95L antibodies 30 min after induction of stroke showed a marked decrease in both infarct volumes and mortality. Accordingly, the locomotor performance of these animals was not significantly impaired in comparison to sham-operated animals. These data reveal that inhibition of TNF and CD95L blocks stroke-related damage at two levels, the primary ischemic and the secondary inflammatory injury. These results offer new approaches in stroke treatment.  相似文献   

13.
Several members of the tumour necrosis factor receptor (TNF-R) superfamily can induce cell death. For TNF-R1, Fas/APO-1, DR3, DR6, TRAIL-R1 and TRAIL-R2, a conserved 'death domain' in the intracellular region couples these receptors to activation of caspases. However, it is not yet known how TNF receptor family members lacking a death domain, such as TNF-R2, CD40, LT-betaR, CD27 or CD30, execute their death-inducing capability. Here we demonstrate in different cellular systems that cytotoxic effects induced by TNF-R2, CD40 and CD30 are mediated by endogenous production of TNF and autotropic or paratropic activation of TNF-R1. In addition, stimulation of TNF-R2 and CD40 synergistically enhances TNF-R1-induced cytotoxicity. These findings describe a novel pro-apoptotic mechanism induced by some members of the TNF-R family.  相似文献   

14.
The lysophospholipids, sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), sphingosylphosphorylcholine (SPC) and lysophosphatidylcholine (LPC), activate diverse groups of G-protein-coupled receptors that are widely expressed and regulate decisive cellular functions. Receptors of the endothelial differentiation gene family are activated by S1P (S1P1-5) or LPA (LPA1-3); two more distantly related receptors are activated by LPA (LPA4/5); the GPR3/6/12 receptors have a high constitutive activity but are further activated by S1P and/or SPC; and receptors of the OGR1 cluster (OGR1, GPR4, G2A, TDAG8) appear to be activated by SPC, LPC, psychosine and/or protons. G-protein-coupled lysophospholipid receptors regulate cellular Ca2+ homoeostasis and the cytoskeleton, proliferation and survival, migration and adhesion. They have been implicated in development, regulation of the cardiovascular, immune and nervous systems, inflammation, arteriosclerosis and cancer. The availability of S1P and LPA at their G-protein-coupled receptors is regulated by enzymes that generate or metabolize these lysophospholipids, and localization plays an important role in this process. Besides FTY720, which is phosphorylated by sphingosine kinase-2 and then acts on four of the five S1P receptors of the endothelial differentiation gene family, other compounds have been identified that interact with more ore less selectivity with lysophospholipid receptors.  相似文献   

15.
Many anticancer drugs are able to induce apoptosis in tumor cells but the mechanisms underlying this phenomenon are poorly understood. Some authors reported that the p53 tumor suppressor gene may be responsible for drug-induced apoptosis; however, chemotherapy-induced apoptosis can also be observed in p53 negative cells. Recently, doxorubicin (DXR) was reported to induce CD95L expression to mediate apoptosis through the CD95/CD95L system. Thus, an impairment of such a system may be involved in drug resistance. We evaluated the in vitro antitumor activity of several cytotoxic drugs on two human p53-negative T-cell lymphoma cell lines, the HUT78-B1 CD95L-resistant cell line and the HUT78 parental CD95L-sensitive cell line. We demostrated by Western blotting assay that DXR and etoposide (VP-16) were able to induce CD95L expression after 4 h of treatment. In contrast, they were unable to induce the expression of p53. DXR, at concentrations ranging from 0.001 - 1 microg/ml, and VP16, at concentrations ranging from 0.05 - 1 microg/ml, were equally cytotoxic and induced apoptosis in both cell lines as assessed by fluorescence microscopy and flow cytometry analyses. Although we observed a slightly reduced percentage of apoptotic cells in HUT78B1 when compared with the parental HUT78 cells after few hours of drug exposure, this difference was no longer evident at 48 or 72 h. Similarly, the exposure of HUT78 cells to a CD95-blocking antibody partially reduced early apoptosis (24 h) without affecting the long-term effects of the drugs including cytotoxicity. Furthermore, as observed with DXR and VP-16, both the CD95L-sensitive and the CD95L-resistant cell lines resulted equally sensitive to the cytotoxic effects of a number of different cytotoxic drugs (vincristine, camptothecin, 5-fluorouracil and methotrexate). The treatment with the Caspase-3 tetrapeptide aldehyde inhibitor, Ac-DEVD-CHO, did not affect the DXR-induced apoptosis whereas it only modestly inhibited apoptosis and cytotoxicity of VP-16, while Z-VAD.FMK, a Caspase inhibitor that prevents the processing of Caspase-3 to its active form, was able to block DXR-induced apoptosis at 24 h but not at 48 h. Thus, our results do not confirm a crucial role for the CD95/CD95L system in drug-induced apoptosis and suggest the involvement of alternative p53-independent pathways at least in this experimental model system.  相似文献   

16.
Signalling pathways of the TNF superfamily: a double-edged sword   总被引:1,自引:0,他引:1  
Two different tumour-necrosis factors (TNFs), first isolated in 1984, were found to be cytotoxic to tumour cells and to induce tumour regression in mice. Research during the past two decades has shown the existence of a superfamily of TNF proteins consisting of 19 members that signal through 29 receptors. These ligands, while regulating normal functions such as immune responses, haematopoiesis and morphogenesis, have also been implicated in tumorigenesis, transplant rejection, septic shock, viral replication, bone resorption, rheumatoid arthritis and diabetes; so indicating their role as 'double-edged swords'. These cytokines either induce cellular proliferation, survival, differentiation or apoptosis. Blockers of TNF have been approved for human use in treating TNF-linked autoimmune diseases in the United States and other countries.  相似文献   

17.
CD45, an abundant and highly glycosylated cell-surface protein, is a critical regulator of T-cell development. CD45 is differentially glycosylated throughout the life of a T cell, and the glycosylation state of CD45 controls recognition by various binding partners, affects intracellular signaling by the cytoplasmic tyrosine phosphatase domain and modulates the response of the T cell to antigen. Although the importance of CD45 during T-cell development has been established, it is becoming increasingly clear that glycosylation of CD45 is a dynamic process that modifies T-cell survival, activation and immune function. In this review, we address changes that occur in CD45 glycosylation during T-cell development and differentiation, describe carbohydrate-binding proteins that recognize differentially glycosylated forms of CD45, and discuss how differential glycosylation alters the T-cell response to a variety of signals involved in selection, activation and apoptosis.  相似文献   

18.
The initial inoculum level of Tetrahymena in a chemically defined medium determines whether the cells are capable of exponential growth. Below 750 cells ml?1, the cells fail to go into exponential growth and will die within about 20 hours. By adding certain growth stimulants, death can be postponed and the cells begin to grow after a delay which depends on the intensity of the signal. The implication is that autocrine growth factor expression might be required for cells to grow, and that these stimulants either assist its production or lower the cell threshold to its action. The findings in Tetrahymena are reviewed, and the advantages of having a cell system in which all the components of the medium can be carefully controlled is recognised.  相似文献   

19.
Epidermal growth factor receptor-dependent CD95-tyrosine phosphorylation was recently identified as an early step in apoptosis induction via the CD95 system (Reinehr, R., Schliess, F., and H?ussinger, D. (2003) FASEB J. 17, 731-733). The effect of peroxynitrite (ONOO(-)) on modulation of the hyperosmotic and CD95 ligand (CD95L)-induced CD95 activation process was studied. Pretreatment of hepatocytes with ONOO(-) inhibited CD95L- and hyperosmolarity-induced CD95 membrane trafficking and formation of the death-inducing signaling complex, but not epidermal growth factor receptor activation and its association with CD95. Under these conditions, however, no tyrosine phosphorylation of CD95 occurred; instead, CD95 was tyrosine-nitrated. When ONOO(-) was added after induction of CD95-tyrosine phosphorylation by CD95L or hyperosmolarity, tyrosine nitration of CD95 was largely prevented and death-inducing signaling complex formation occurred. CD95-tyrosine nitration abolished the hyperosmotic sensitization of hepatocytes toward CD95L-induced apoptosis. Additionally, in CD95-yellow fluorescent protein-transfected Huh7-hepatoma cells, ONOO(-) induced CD95 Tyr nitration and prevented CD95L-induced Tyr phosphorylation and apoptosis. Tyrosine-nitrated CD95 was also found in rat livers derived from an in vivo model of endotoxinemia. The data suggest that CD95-tyrosine nitration prevents CD95 activation by inhibiting CD95-tyrosine phosphorylation. Apparently, CD95-tyrosine phosphorylation and nitration are mutually exclusive. The data identify critical tyrosine residues of CD95 as another target of the anti-apoptotic action of NO.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号