首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A molecular dynamics simulation (1.1 ns) at 300 K, of fully hydrated Ile21Cys, Glu25Cys plastocyanin mutant has been performed to investigate the structural, dynamical and functional effects of a disulfide bridge insertion at the surface of the protein. A detailed analysis of the root mean square fluctuations, H-bonding pattern and dynamical cross-correlation map has been performed. An essential dynamics method has also been applied as complementary analysis to identify concerted motions (essential modes), that could be relevant to the electron transfer function. The results have been compared with those previously obtained for wild-type plastocyanin and have revealed that the mutant shows a different pattern of H-bonds, with several interactions lost and a higher flexibility, especially around the electron transfer copper site. The analysis of dynamical cross-correlation map and of essential modes, has shown that the mutant performs different functional concerted motions, which might be related to the binding recognition with its electron transfer partners in comparison with the wild-type protein.  相似文献   

2.
The electron transfer reactions between a lipid bilayer-modified gold electrode and oxidized spinach plastocyanin have been studied by cyclic voltammetry, using either an electrically neutral phosphatidylcholine (PC) bilayer or a positively charged PC bilayer containing 40 mol% dimethyldioctadecylammonium chloride, at two ionic strengths of electrolyte (0.02 and 0.2 M NaClO4). Plastocyanin was found to interact strongly enough with the lipid membrane to support an efficient electron transfer reaction with the electrode. The interaction forces, and therefore the mode of diffusion of plastocyanin molecules to the electrode, which limits the electron transfer rate, could be controlled by the PC concentration. At low lipid concentrations (0-5 mg/ml), electrostatically attractive interactions between specific microelectroactive sites on the surface of the lipid membrane and plastocyanin molecules predominate, producing a radial mode of diffusion of the protein molecules to the electrode surface. On the other hand, at high lipid concentrations (greater than 5 mg/ml), interaction between plastocyanin and the lipid membrane occurs via hydrophobic forces, and a linear diffusion of protein molecules limits the electron transfer process. These observations support and extend other experimental and theoretical results which indicate two possible sites on the surface of the plastocyanin molecule, one hydrophobic and one negatively charged, which are able to participate in electron transfer reactions. We conclude that electrochemical measurements with the present system provide a new approach to the study of redox protein-membrane interactions.  相似文献   

3.
This paper reports the first site-directed mutagenesis analysis of any cytochrome c6, a heme protein that performs the same function as the copper-protein plastocyanin in the electron transport chain of photosynthetic organisms. Photosystem I reduction by the mutants of cytochrome c6 from the cyanobacterium Synechocystis sp. PCC 6803 has been studied by laser flash absorption spectroscopy. Their kinetic efficiency and thermodynamic properties have been compared with those of plastocyanin mutants from the same organism. Such a comparative study reveals that aspartates at positions 70 and 72 in cytochrome c6 are located in an acidic patch that may be isofunctional with the well known "south-east" patch of plastocyanin. Calculations of surface electrostatic potential distribution in the mutants of cytochrome c6 and plastocyanin indicate that the changes in protein reactivity depend on the surface electrostatic potential pattern rather than on the net charge modification induced by mutagenesis. Phe-64, which is close to the heme group and may be the counterpart of Tyr-83 in plastocyanin, does not appear to be involved in the electron transfer to photosystem I. In contrast, Arg-67, which is at the edge of the cytochrome c6 acidic area, seems to be crucial for the interaction with the reaction center.  相似文献   

4.
The interaction between plastocyanin and the intact cytochrome bf complex, both from spinach, has been studied by stopped-flow kinetics with mutant plastocyanin to elucidate the site of electron transfer and the docking regions of the molecule. Mutation of Tyr-83 to Arg or Leu provides no evidence for a second electron transfer path via Tyr-83 of plastocyanin, which has been proposed to be the site of electron transfer from cytochrome f. The data found with mutations of acidic residues indicate that both conserved negative patches are essential for the binding of plastocyanin to the intact cytochrome bf complex. Replacing Ala-90 and Gly-10 at the flat hydrophobic surface of plastocyanin by larger residues slowed down and accelerated, respectively, the rate of electron transfer as compared with wild-type plastocyanin. These opposing effects reveal that the hydrophobic region around the electron transfer site at His-87 is divided up into two regions, of which only that with Ala-90 contributes to the attachment to the cytochrome bf complex. These binding sites of plastocyanin are substantially different from those interacting with photosystem I. It appears that each of the two binding regions of plastocyanin is split into halves, which are used in different combinations in the molecular recognition at the two membrane complexes.  相似文献   

5.
The electrochemistry of the redox proteins, cytochrome c, cytochrome b5, plastocyanin and ferredoxin at modified gold electrodes has been examined on the basis that electron transfer takes place at electroactive sites which are microscopic in size. Using this model, it is now proposed that electrochemistry of these proteins occurs at suitably modified sites with fast rates at potentials near the standard redox potential. The microscopic model implies that redox proteins and enzymes take part in fast electron transfer at specific sites on the electrode, other sites being completely ineffective. This form of molecular recognition, i.e. the ability to discriminate between the different sites on an electrode surface, mimics homogeneous redox reactions wherein redox active proteins 'recognize' their biological partners in a very specific sense. Previously, protein electrochemistry has been interpreted via use of a macroscopic model in which the proteins are transported to the electrode surface by linear diffusion followed by quasi-reversible or irreversible electron transfer to the electrode surface. The microscopic model, which assumes that the movement of the protein occurs predominantly by radial diffusion to very small sites, would appear to explain the data more satisfactorily and be consistent with biologically important, homogeneous redox reactions which are known to be fast.  相似文献   

6.
A long-term molecular dynamics simulation (1.1 ns), at 300 K, of fully hydrated azurin has been performed to put into relationship the protein dynamics to functional properties with particular attention to those structural elements involved in the electron transfer process. A detailed analysis of the root mean square deviations and fluctuations and of the intraprotein H-bonding pattern has allowed us to demonstrate that a rigid arrangement of the beta-stranded protein skeleton is maintained during the simulation run, while a large mobility is registered in the solvent-exposed connecting regions (turns) and in the alpha-helix. Moreover, the structural elements, likely involved in the electron transfer path, show a stable H-bonding arrangement and low fluctuations. Analysis of the dynamical cross-correlation map has revealed the existence of correlated motions among residues connected by hydrogen bonds and of correlated and anti-correlated motions between regions which are supposed to be involved in the functional process, namely the hydrophobic patch and the regions close to the copper reaction center. The results are briefly discussed also in connection to the current through-bond tunneling model for the electron transfer process. Finally, a comparison with the structural and the dynamical behaviour of plastocyanin, whose structure and functional role are very similar to those of azurin, has been performed.  相似文献   

7.
Electron transfer from plastocyanin to photosystem I.   总被引:9,自引:3,他引:6       下载免费PDF全文
Mutant plastocyanins with Leu at position 10, 90 or 83 (Gly, Ala and Tyr respectively in wildtype) were constructed by site-specific mutagenesis of the spinach gene, and expressed in transgenic potato plants under the control of the authentic plastocyanin promoter, as well as in Escherichia coli as truncated precursor intermediates carrying the C-terminal 22 amino acid residues of the transit peptide, i.e. the thylakoid-targeting domain that acts as a bacterial export signal. The identity of the purified plastocyanins was verified by matrix-assisted laser desorption/ionization mass spectrometry. The formation of a complex between authentic or mutant spinach plastocyanin and isolated photosystem I and the electron transfer has been studied from the biphasic reduction kinetics of P700+ after excitation with laser flashes. The formation of the complex was abolished by the bulky hydrophobic group of Leu at the respective position of G10 or A90 which are part of the conserved flat hydrophobic surface around the copper ligand H87. The rate of electron transfer decreased by both mutations to < 20% of that found with wildtype plastocyanin. We conclude that the conserved flat surface of plastocyanin represents one of two crucial structural elements for both the docking at photosystem I and the efficient electron transfer via H87 to P700+. The Y83L mutant exhibited faster electron transfer to P700+ than did authentic plastocyanin. This proves that Y83 is not involved in electron transfer to P700 and suggests that electron transfer from cytochrome f and to P700 follows different routes in the plastocyanin molecule. Plastocyanin (Y83L) expressed in either E. coli or potato exhibited different isoelectric points and binding constants to photosystem I indicative of differences in the folding of the protein. The structure of the binding site at photosystem I and the mechanism of electron transfer are discussed.  相似文献   

8.
The electron transfer reactions of four small redox proteins, cytochrome c. ferredoxin, plastocyanin and azurin, have been investigated at novel peptide-modified gold electrodes. These proved to be effective and selective in facilitating electron transfer. Good, quasi-reversible electron transfer was achieved selectively at different peptide-protein configurations by changing the pH or the ionic strength of the solution. The use of peptides as promoters for protein electrochemistry opens up the possibility of designing very specific electrode surfaces for larger molecules like enzymes.  相似文献   

9.
Complexes of Photosynthetic Redox Proteins Studied by NMR   总被引:2,自引:2,他引:0  
In the photosynthetic redox chain, small electron transfer proteins shuttle electrons between the large membrane-associated redox complexes. Short-lived but specific protein:protein complexes are formed to enable fast electron transfer. Recent nuclear magnetic resonance (NMR) studies have elucidated the binding sites on plastocyanin, cytochrome c (6) and ferredoxin. Also the orientation of plastocyanin in complex with cytochrome f has been determined. Based on these results, general features that enable the formation of such transient complexes are discussed.  相似文献   

10.
R M Wynn  R Malkin 《Biochemistry》1988,27(16):5863-5869
Plastocyanin has been covalently cross-linked to photosystem I (PSI) by using a water-soluble cross-linker, N-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The cross-linking reaction is light stimulated and results in the disappearance of a single 19-kDa subunit of PSI with the formation of a new protein-staining component of 31 kDa. The new product at 31 kDa reacts with both plastocyanin and 19-kDa subunit antibodies. Carboxyl group modified plastocyanin does not form a cross-linked product with PSI, implying that the negatively charged surface-exposed groups on plastocyanin are necessary to stabilize binding. These results demonstrate a specific interaction of plastocyanin with PSI and further implicate a specific protein to which plastocyanin binds to facilitate electron transfer to the P700 reaction center.  相似文献   

11.
Chemically modified spinach plastocyanin, in which negatively charged carboxyl residues are replaced with positively charged amino residues, has been prepared. Four distinct species of chemically modified plastocyanin, having 1 to 4 mol of modified carboxyl residue per mol of plastocyanin, could be separated by ion-exchange chromatography on DEAE-Sephacel. The rate of electron transfer from reduced cytochrome f to oxidized singly substituted plastocyanin was 30% of that of the native unmodified plastocyanin, and the reaction rate decreased further with increasing number of modified carboxyl residues. These results indicate the importance of electrostatic interactions between the negative charges on plastocyanin and the positive charges on cytochrome f in this reaction. Since the overall net charge of cytochrome f is negative at neutral pH, the positive charges on cytochrome f involved in the reaction should be localized ones. On the other hand, the rates of electron transfer from reduced singly and doubly substituted plastocyanin to photooxidized P700 in the P700-chlorophyll alpha protein complex were similar to that of native plastocyanin, which suggests that these carboxyl residues have only a minor role in the electron transfer to P700. Although divalent cation is essential for the electron transfer from native plastocyanin to P700 at neutral pH, the triply substituted plastocyanin could donate electrons to P700 even without MgCl2, and the rate of this reaction reached the maximum at a low concentration of MgCl2 (less than 2.5 mM). The modification of four carboxyl residues per plastocyanin molecule activated this reaction to the maximum level without MgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Two mutants of plastocyanin have been constructed by site-directed mutagenesis in spinach and pea to elucidate the binding and electron transfer properties between plastocyanin and spinach Photosystem 1. The conserved, surface-exposed Tyr-83 has been replaced by phenylalanine and leucine in plastocyanin from both species and the proteins have been expressed in Escherichia coli. The reaction mechanism of electron transfer from plastocyanins to photooxidized P700 in Photosystem 1 has been studied by laser-flash absorption spectroscopy. The experimental data were interpreted with a model involving a rate-limiting conformational change, preceding the intracomplex electron transfer. The pea proteins show an overall facilitated reaction with spinach Photosystem 1, compared to spinach plastocyanins. The changes are small but significant, indicating a more efficient electron transfer within the transient complex. In addition, for the spinach leucine mutant, the equilibrium within the plastocyanin-Photosystem 1 complex is more displaced towards the active conformation than for the corresponding wild-type. Absorption spectra, EPR and reduction potentials for the mutants are similar to those of the corresponding wild-type, although small shifts are observed in the spectra of the Tyr83Leu proteins. Based on these results, it is suggested that Photosystem 1 from spinach is capable of using both pea and spinach plastocyanin as an efficient electron donor and that the former even can stimulate the Photosystem 1 reduction. The origin of the stimulation is discussed in terms of differences in surface-exposed residues. Since the effects of the mutations are small, it can be concluded that electron transfer to Photosystem 1 does not occur via Tyr-83.Abbreviations cyt- cytochrome - IPTG- isopropyl--d-thiogalactopyranoside - P,P700- reaction-center chlorophyll - Pc- plastocyanin - PS 1- Photosystem 1 - SDS-PAGE- sodium dodecyl sulfate polyacrylamide gel electrophoresis - WT- wild-type  相似文献   

13.
Cytochrome c6 has long been known as a redox carrier of the thylakoid lumen of cyanobacteria and some eukaryotic algae that can substitute for plastocyanin in electron transfer. Until recently, it was widely accepted that land plants lack a cytochrome c6. However, a homologue of the protein has now been identified in several plant species together with an additional isoform in the green alga Chlamydomonas reinhardtii. This form of the protein, designated cytochrome c6A, differs from the 'conventional' cytochrome c6 in possessing a conserved insertion of 12 amino acids that includes two absolutely conserved cysteine residues. There are conflicting reports of whether cytochrome c6A can substitute for plastocyanin in photosynthetic electron transfer. The evidence for and against this is reviewed and the likely evolutionary history of cytochrome c6A is discussed. It is suggested that it has been converted from a primary role in electron transfer to one in regulation within the chloroplast, and is an example of evolutionary 'bricolage'.  相似文献   

14.
Soluble turnip cytochrome f has been purified from the periplasmic fraction of Escherichia coli expressing a truncated petA gene encoding the precursor protein lacking the C-terminal 33 amino-acid residues. The protein is identical [as judged by 1H-NMR spectroscopy, midpoint redox potential (+ 365 mV) and electron transfer reactions with plastocyanin] to cytochrome f purified from turnip leaves. Several residues in the hydrophobic patch surrounding the haem group have been changed by site-directed mutagenesis, and the proteins purified from E. coli. The Y1F and Q7N mutants showed only minor changes in the plastocyanin-binding constant Ka and the second-order rate constant for electron transfer to plastocyanin, whereas the Y160S mutant showed a 30% decrease in the overall rate of electron transfer caused in part by a 60% decrease in binding constant and partially compensated by an increased driving force due to a 27-mV decrease in redox potential. In contrast, the F4Y mutant showed increased rates of electron transfer which may be ascribed to an increased binding constant and a 14-mV decrease in midpoint redox potential. This indicates that subtle changes in the hydrophobic patch can influence rates of electron transfer to plastocyanin by changing the binding constants and altering the midpoint redox potential of the cytochrome haem group.  相似文献   

15.
The low-frequency dynamics of plastocyanin, an electron transfer copper protein, has been investigated by incoherent neutron scattering at different temperatures. The contribution to the dynamic structure factor arising from H/D exchangeable and non-exchangeable protein protons has been evaluated by analyzing two differently exchanged protein samples. The dynamic structure factor of a hydrated plastocyanin sample with all the exchangeable hydrogens (about 150) replaced by deuterium exhibits an excess of vibrational modes, at about 3.5 meV, reminiscent of the boson peak found in other proteins and glassy systems. When only fast exchangeable hydrogens (about 50) are substituted by deuterium, the protein, besides the above-mentioned peak, shows an additional peak at about 1 meV. These vibrational peaks are discussed in connection with the topological disorder of the systems and the fluctuations of the intramolecular hydrogen bonds.  相似文献   

16.
A number of surface residues of plastocyanin from Prochlorothrix hollandica have been modified by site-directed mutagenesis. Changes have been made in amino acids located in the amino-terminal hydrophobic patch of the copper protein, which presents a variant structure as compared with other plastocyanins. The single mutants Y12G, Y12F, Y12W, P14L, and double mutant Y12G/P14L have been produced. Their reactivity toward photosystem I has been analyzed by laser flash absorption spectroscopy. Plots of the observed rate constant with all mutants versus plastocyanin concentration show a saturation profile similar to that with wild-type plastocyanin, thus suggesting the formation of a plastocyanin-photosystem I transient complex. The mutations do not induce relevant changes in the equilibrium constant for complex formation but induce significant variations in the electron transfer rate constant, mainly with the two mutants at proline 14. Additionally, molecular dynamics calculations indicate that mutations at position 14 yield small changes in the geometry of the copper center. The comparative kinetic analysis of the reactivity of plastocyanin mutants toward photosystem I from different organisms (plants and cyanobacteria) reveals that reversion of the unique proline of Prochlorothrix plastocyanin to the conserved leucine of all other plastocyanins at this position enhances the reactivity of the Prochlorothrix protein.  相似文献   

17.
S He  S Modi  D S Bendall    J C Gray 《The EMBO journal》1991,10(13):4011-4016
Site-directed mutants of the pea plastocyanin gene in which the codon for the surface-exposed Tyr83 has been changed to codons for Phe83 and Leu83 have been expressed in transgenic tobacco plants. The mutant proteins have been purified to homogeneity and their conformations shown not to differ significantly from the wild-type plastocyanin by 1H-NMR and CD. Overall rate constants for electron transfer (k2) from cytochrome f to plastocyanin have been measured by stopped-flow spectrophotometry and rate constants for binding (ka) and association constants (KA) have been measured from the enhanced Soret absorption of cytochrome f on binding plastocyanin. These measurements allow the calculation of the intrinsic rate of electron transfer in the binary complex. An 8-fold decrease in the overall rate of electron transfer to the Phe83 mutant is due entirely to a decreased association constant for cytochrome f, whereas the 40-fold decrease in the overall rate of electron transfer to the Leu83 mutant is due to weaker binding and a lower intrinsic rate of electron transfer. This indicates that Tyr83 is involved in binding to cytochrome f and forms part of the main route of electron transfer.  相似文献   

18.
19.
Spectroscopic properties, amino acid sequence, electron transfer kinetics, and crystal structures of the oxidized (at 1.7 A resolution) and reduced form (at 1.8 A resolution) of a novel plastocyanin from the fern Dryopteris crassirhizoma are presented. Kinetic studies show that the reduced form of Dryopteris plastocyanin remains redox-active at low pH, under conditions where the oxidation of the reduced form of other plastocyanins is inhibited by the protonation of a solvent-exposed active site residue, His87 (equivalent to His90 in Dryopteris plastocyanin). The x-ray crystal structure analysis of Dryopteris plastocyanin reveals pi-pi stacking between Phe12 and His90, suggesting that the active site is uniquely protected against inactivation. Like higher plant plastocyanins, Dryopteris plastocyanin has an acidic patch, but this patch is located closer to the solvent-exposed active site His residue, and the total number of acidic residues is smaller. In the reactions of Dryopteris plastocyanin with inorganic redox reagents, the acidic patch (the "remote" site) and the hydrophobic patch surrounding His90 (the "adjacent" site) are equally efficient for electron transfer. These results indicate the significance of the lack of protonation at the active site of Dryopteris plastocyanin, the equivalence of the two electron transfer sites in this protein, and a possibility of obtaining a novel insight into the photosynthetic electron transfer system of the first vascular plant fern, including its molecular evolutionary aspects. This is the first report on the characterization of plastocyanin and the first three-dimensional protein structure from fern plant.  相似文献   

20.
Plastocyanin is a copper protein found in photosynethetic tissue and it exhibits the properties of a physiological redox reagent. This protein has been purified from the blue-green alga Anabaena variabilis. Plastocyanin is required for a number of partial reactions of the photosynthetic electron transfer chain. These reactions include the transfer of electrons from reduced 2,3′,6-trichlorophenolindophenol,N,N,N′,N′- tetramethyl-p-phenylenediamine and 2,3,5,6-tetramethyl-p-phenylenediamine to low potential oxidants. Reduced cytochrome c photooxidation does not appear to be dependent on plastocyanin. Cytochrome f, isolated from this alga, will partially replace plastocyanin in many of these reations. Inhibition of photosynthetic reactions by copper chelators appears to occur at some site other than the site of plastocyanin function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号