首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous work has shown that stimulation of muscarinic receptors in various cell lines increases intracellular cyclic AMP (cAMP) levels. This unusual response has been hypothesized to be mediated by stimulation of calcium/calmodulin-sensitive adenylate cyclase, secondary to inositol trisphosphate (IP3)-mediated calcium mobilization. To test this hypothesis, we stimulated muscarinic receptors in SK-N-SH human neuroblastoma cells while blocking the IP3-mediated rise in intracellular calcium concentration using two different methods. Loading cells with the intracellular calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) abolished the carbachol-mediated intracellular calcium release without abolishing the carbachol-mediated increase in cAMP level. Similarly, in cells preexposed to carbachol, the agonist-induced change in intracellular calcium level was blocked, but the cAMP response was not. Thus, both of these methods failed to block the muscarinic receptor-mediated increase in cAMP level, thereby demonstrating that this cAMP level increase is not mediated by a detectable rise in intracellular calcium concentration.  相似文献   

2.
J Baumgold  R Paek  T Yasumoto 《Life sciences》1992,50(23):1755-1759
Stimulation of m1 and of m3 muscarinic receptors has previously been shown to increase intracellular cAMP levels in a variety of cells. Although the mechanism underlying this response is not fully understood, it has been hypothesized to be secondary to the IP3-mediated rise in intracellular calcium. In order to determine whether other means of elevating intracellular calcium also raise cAMP levels, we stimulated SK-N-SH human neuroblastoma cells with bradykinin or with maitotoxin. Both of these agents stimulated phospholipase C, stimulated inositol phosphate release and elevated cAMP levels, thus demonstrating that this cAMP response is not unique to muscarinic receptor stimulation.  相似文献   

3.
H Sugawara  M Kurosaki  M Takata    T Kurosaki 《The EMBO journal》1997,16(11):3078-3088
Stimulation of B-cell antigen receptor (BCR) induces a rapid increase in cytoplasmic free calcium due to its release from intracellular stores and influx from the extracellular environment. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ligand-gated channels that release intracellular calcium stores in response to the second messenger, inositol 1,4,5-trisphosphate. Most hematopoietic cells, including B cells, express at least two of the three different types of IP3R. We demonstrate here that B cells in which a single type of IP3R has been deleted still mobilize calcium in response to BCR stimulation, whereas this calcium mobilization is abrogated in B cells lacking all three types of IP3R. Calcium mobilization by a transfected G protein-coupled receptor (muscarinic M1 receptor) was also abolished in only triple-deficient cells. Capacitative Ca2+ entry, stimulated by thapsigargin, remains unaffected by loss of all three types of IP3R. These data establish that IP3Rs are essential and functionally redundant mediators for both BCR- and muscarinic receptor-induced calcium mobilization, but not for thapsigargin-induced Ca2+ influx. We further show that the BCR-induced apoptosis is significantly inhibited by loss of all three types of IP3R, suggesting an important role for Ca2+ in the process of apoptosis.  相似文献   

4.
The m1 muscarinic acetylcholine receptor gene was transfected into and stably expressed in A9 L cells. The muscarinic receptor agonist, carbachol, stimulated inositol phosphate generation, arachidonic acid release, and cAMP accumulation in these cells. Carbachol stimulated arachidonic acid and inositol phosphate release with similar potencies, while cAMP generation required a higher concentration. Studies were performed to determine if the carbachol-stimulated cAMP accumulation was due to direct coupling of the m1 muscarinic receptor to adenylate cyclase via a GTP binding protein or mediated by other second messengers. Carbachol failed to stimulate adenylate cyclase activity in A9 L cell membranes, whereas prostaglandin E2 did, suggesting indirect stimulation. The phorbol ester, phorbol 12-myristate 13-acetate (PMA), stimulated arachidonic acid release yet inhibited cAMP accumulation in response to carbachol. PMA also inhibited inositol phosphate release in response to carbachol, suggesting that activation of phospholipase C might be involved in cAMP accumulation. PMA did not inhibit prostaglandin E2-, cholera toxin-, or forskolin-stimulated cAMP accumulation. The phospholipase A2 inhibitor eicosatetraenoic acid and the cyclooxygenase inhibitors indomethacin and naproxen had no effect on carbachol-stimulated cAMP accumulation. Carbachol-stimulated cAMP accumulation was inhibited with TMB-8, an inhibitor of intracellular calcium release, and W7, a calmodulin antagonist. These observations suggest that carbachol-stimulated cAMP accumulation does not occur through direct m1 muscarinic receptor coupling or through the release of arachidonic acid and its metabolites, but is mediated through the activation of phospholipase C. The generation of cytosolic calcium via inositol 1,4,5-trisphosphate and subsequent activation of calmodulin by m1 muscarinic receptor stimulation of phospholipase C appears to generate the accumulation of cAMP.  相似文献   

5.
We have investigated the unusual observation that depolarization of rat basophilic leukemia cells in high potassium not only fails to induce secretion, but also inhibits the secretion induced when receptors for IgE are aggregated by antigen. Antigen-stimulated 45Ca uptake and the rise in cytoplasmic free ionized calcium measured with the fluorescent indicator quin2 were both inhibited in depolarized cells. 45Ca efflux, on the other hand, was unaffected, which confirms that IgE receptor activation was not impaired in high potassium. Unlike the large increase in total cell calcium seen when cells in normal saline solution were stimulated with antigen, there was a decrease in total cell calcium when depolarized cells were stimulated. This is consistent with our finding that 45Ca uptake was inhibited while 45Ca efflux was unaffected. Inhibition of 45Ca uptake and secretion closely paralleled the decrease in membrane potential, and could be overcome by increasing the extracellular calcium concentration. We conclude that changes in the electrochemical gradient for calcium are important in determining calcium influx and the magnitude of antigen-stimulated secretion from rat basophilic leukemia cells, while the release of calcium from intracellular stores is unaffected.  相似文献   

6.
Stimulation of the nicotinic receptor of bovine chromaffin cells results in a rise in intracellular free calcium [( Ca2+]i) and subsequent release of catecholamine. This response is totally dependent on the presence of external Ca2+. Monitoring [Ca2+]i using quin-2 demonstrated a rise in [Ca2+]i in response to muscarinic agonists which was approximately 4-times less than that obtained in response to nicotinic stimulation. This atropine-sensitive [Ca2+]i rise occurred after a 10-s lag and was found to be independent of the external Ca2+, implying the existence of an intracellular Ca2+ source. Despite producing this [Ca2+]i rise low concentrations of the muscarinic agonist, methacholine (under 1 X 10(-3) M), failed to trigger secretion itself and did not effect the secretory response elicited by nicotine. Challenging the cells with higher methacholine concentrations (over 1 X 10(-3) M) resulted in the same [Ca2+]i rise, no secretion, but an inhibition of secretion due to nicotine. This latter response, however, was found to be atropine-insensitive and therefore non-muscarinic. The [Ca2+]i rise and secretion due to depolarization by 55 mM K+ were largely unaffected by prior addition 1 X 10(-2) M methacholine, inferring that high concentrations of methacholine inhibit nicotine-induced secretion by interacting with the nicotinic receptor. These results provide evidence consistent with the existence of an intracellular Ca2+ store mobilized by muscarinic receptor activation in bovine chromaffin cells and show that, despite causing a rise in [Ca2+]i, bovine chromaffin cell muscarinic stimulation does not effect secretion itself or secretion induced by either nicotine or high K+.  相似文献   

7.
It had previously been thought that muscarinic cholinergic receptors utilize an influx of extracellular calcium for activation of adrenomedullary catecholamine secretion. However, it has recently been demonstrated that muscarinic receptors on isolated adrenal chromaffin cells can elevate cytosolic free calcium levels in a manner independent of extracellular calcium, presumably by mobilizing intracellular calcium stores. We now demonstrate that muscarinic receptor-mediated catecholamine secretion from perfused rat adrenal glands can occur under conditions of extracellular calcium deprivation that are sufficient to block both nicotine- and electrically stimulated release. Three independent conditions of extracellular calcium deprivation were used: nominally calcium-free perfusion solution (no calcium added), EGTA-containing calcium-free perfusion solution, and perfusion solution containing the calcium channel blocker verapamil. Secretion was evoked from the perfused glands by either transmural electrical stimulation or injection of nicotine or muscarine into the perfusion stream. Each condition of calcium deprivation was able to block nicotine- and electrically stimulated catecholamine release in an interval that left muscarine-evoked release largely unaffected. The above results demonstrate that muscarine-evoked catecholamine secretion from perfused rat adrenal glands can occur in the absence of extracellular calcium, presumably by mobilization of intracellular calcium. The latter may be due to muscarinic receptor-mediated generation of inositol trisphosphate.  相似文献   

8.
Fura-2 fluorescence in single rat basophilic leukemia cells was monitored to study the rise in intracellular free ionized calcium ([Ca2+]i) produced by aggregation of immunoglobulin E receptors. Repetitive transient increases in [Ca2+]i were induced by antigen stimulation and were measured using digital video imaging microscopy at high time resolution. The [Ca2+]i oscillations were not dependent upon changes in the membrane potential of the cells and were observed in cells stimulated with antigen either with or without extracellular Ca2+. Transient oscillations in [Ca2+]i were also observed when calcium influx was blocked with La3+. These results suggested that during antigen stimulation of cells under normal physiological conditions, release of Ca2+ from intracellular stores makes an important contribution to the initial increase in [Ca2+]i. Oscillations in [Ca2+]i are not induced by elevating [Ca2+]i with the calcium ionophore ionomycin. Mitochondrial calcium buffering is not required for [Ca2+]i oscillations to occur. The results show that rat basophilic leukemia cells have significant stores of calcium and that release of calcium from these stores can participate in both the initial rise and the oscillations in [Ca2+]i.  相似文献   

9.
Sertoli cells are hormonally regulated by follicle-stimulating hormone (FSH) acting upon a G-protein-linked cell surface FSH receptor. FSH increases intracellular cyclic AMP but the involvement of other signal transduction mechanisms including intracellular calcium in FSH action are not proven. Using freshly isolated rat Sertoli cells we measured cytosolic free ionized calcium levels by dual-wavelength fluorescence spectrophotometry using the calcium-sensitive fluorescent dye Fura2-AM. The cytosolic calcium concentration in unstimulated Sertoli cells was 89 +/- 2 nM (n = 151 experiments) and was markedly increased by either calcium channel ionophores (ionomycin, Bay K8644) or plasma membrane depolarization consistent with the presence of voltage-sensitive and -independent calcium channel in Sertoli cell membranes. Ovine FSH stimulated a specific, sensitive (ED50, 5.0 ng of S-16/ml), and dose-dependent (maximal at 20 ng/ml) rise in cytosolic calcium commencing within 60 s to reach levels of 192 +/- 31 nM after 180 s and lasting for at least 10 min. The effect of FSH was replicated by forskolin, cholera toxin, and dibutyryl cyclic AMP, suggesting that cyclic AMP may mediate the FSH-induced rise in cytosolic calcium. The FSH-induced rise in cytosolic calcium required extracellular calcium and was abolished by calcium channel blockers specific for dihydropyridine (verapamil, nicardipine), nonvoltage-gated (ruthenium red) or all calcium channels (cobalt). Thus FSH action on Sertoli cells involves a specific, rapid, and sustained increase in cytosolic calcium which requires extracellular calcium and involves both dihydropyridine-sensitive, voltage-gated calcium channels and voltage-independent, receptor-gated calcium channels in the plasma membranes of rat Sertoli cells. The replication by cyclic AMP of the effects of FSH suggests that calcium may be a signal-amplification or -modulating mechanism rather than an alternate primary signal transduction system for FSH in Sertoli cells.  相似文献   

10.
Our previous studies have suggested that phosphatidylcholine-specific phospholipase D (PtdCho-PLD) plays a role in IgE-dependent diacylglycerol production, protein kinase C activation and mediator release in the RBL 2H3 mast cell line. We have extended these studies to examine the mechanisms by which PtdCho-PLD may be regulated in these cells. RBL 2H3 cellular lipids were labeled with [14C]arachidonic acid or [3H]myristic acid, then PtdCho-PLD activity was monitored by the formation of radiolabeled phosphatidylethanol when ethanol was included in the incubation medium. Trinitrophenol-ovalbumin conjugate (10 ng/ml), when added to cells previously sensitized with anti-(trinitrophenelated mouse IgE) (0.5 microgram/ml), ionomycin (1 microM) and thapsigargin (0.1 microM), stimulated PtdCho-PLD activation and mediator release in cells incubated in buffer containing 1.8 mM calcium, but not in cells incubated in calcium-free, buffer. Phorbol 12-myristate 13-acetate (0.1 microM) activated PtdCho-PLD in both buffers, but on its own did not trigger mediator release. When intracellular calcium was chelated with 5,5'-dimethyl-1,2-bis(2- aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, trinitrophenol-ovalbumin conjugate failed to activate PtdCho-PLD and histamine release. Similarly, down-regulation of protein kinase C activity by long-term exposure to the phorbol ester (0.1 microM) and preincubation of the cells with protein kinase inhibitors resulted in the loss of the trinitrophenol-ovalbumin response on PtdCho-PLD activity and histamine release. Taken together, the above results suggest that IgE-dependent PtdCho-PLD activation is dependent on both activation of protein kinase C and a rise in the intracellular free calcium concentration.  相似文献   

11.
Cultured human endothelial cells derived from the umbilical cord vein are able to release factor VIII-related antigen into the culture medium. The experiments described in this paper show the presence of two pathways for the secretion of factor VIII-related antigen from endothelial cells. There is a basal release of this antigen, independent of the presence of extracellular calcium ions. This release can be inhibited by cycloheximide and is therefore directly related to de novo protein synthesis. Besides this basal release, there is an extra release of factor VIII-related antigen that can be stimulated by thrombin, the Ca2+-ionophore A23187 or phorbol myristate acetate. As demonstrated by immunofluorescence, the stimulus-inducible release originates from storage granules in the cells. This stimulus-inducible release is dependent on extracellular Ca2+ but independent of intracellular cAMP.  相似文献   

12.
The effects of hypoxia and carbachol on the release of newly synthesized catecholamines from superfused rat carotid bodies have been examined. Hypoxic superfusion medium was found to evoke catecholamine release which was dependent on the extracellular calcium concentration and was reduced by nitrendipine and atropine. Superfusion with the muscarinic agonist, carbachol, stimulated catecholamine release independently of the oxygen tension of the medium. The effect of carbachol on catecholamine release was abolished by atropine, suggesting that it was mediated by activation of cholinergic receptors of the muscarinic type. Both hypoxia and carbachol stimulated the release of 45Ca from carotid bodies prelabelled with 45Ca. The release of 45Ca with either stimulus was reduced by atropine and nitrendipine. These results suggest that although extracellular calcium plays an important role in the exocytotic secretory process of the carotid body, the mobilization of intracellular calcium pools may also contribute to the secretory response.  相似文献   

13.
We reported previously that stimulation of RBL-2H3 cells through the high-affinity IgE receptor resulted in tyrosine phosphorylation of a 72-kDa protein (pp72) that was coupled to signal transduction. In the present study, although pp72 tyrosine phosphorylation was induced only by antigen triggering, stimulation of RBL-2H3 cells by either antigen or the calcium-ionophore A23187 led to increased tyrosine phosphorylation of a 110-kDa protein (pp110). This tyrosine phosphorylated protein was also observed when RBL-2H3 cells were transfected with the G protein-coupled m3 muscarinic receptor and then stimulated to secrete with carbachol. In contrast to tyrosine phosphorylation of pp72, antigen-induced pp110 tyrosine phosphorylation required extracellular calcium, was absent in cells depleted of protein kinase C, and was detected between 1 and 5 min after stimulation. The protein-tyrosine kinase inhibitor genistein blocked both histamine release and tyrosine phosphorylation induced by A23187. Altogether, the data suggest a role for pp110 in secretion. However, protein kinase C activation induced pp110 tyrosine phosphorylation but not histamine release demonstrating that pp110 tyrosine phosphorylation alone is not sufficient for degranulation. We conclude that tyrosine phosphorylation of pp72 is associated with the early steps of IgE receptor-generated signaling, whereas pp110 tyrosine phosphorylation occurs secondary to calcium influx and protein kinase C activation.  相似文献   

14.
High resolution digital video imaging has been employed to monitor the spatial and temporal development of agonist-induced cytosolic Ca2+ signals in fura 2-loaded exocrine acinar cells. Enzymatically isolated mouse pancreatic and lacrimal acinar cells or small acinar cell clusters were used. These retain their morphological polarity so that the secretory granules in individual cells are located at one pole, the secretory pole. In acinar cell clusters the granules are located centrally, oriented to surround what would be in situ referred to as the lumen. In pancreatic and lacrimal acinar cells inositol-1,4,5-triphosphate-generating agonists [acetylcholine (ACh) and cholecystokinin octapeptide (CCK) for the pancreas and ACh in the lacrimal gland] give rise to a rapidly spreading Ca2+ signal that is initiated at the secretory pole of the cells. The initial increase in [Ca2+]i in the luminal pole is independent of extracellular Ca2+ indicating that the earliest detectable intracellular Ca2+ release is specifically located at the secretory pole. In lacrimal acinar cells ATP acts as an extracellular agonist, independent of phosphoinositide metabolism to activate a receptor-operated calcium influx pathway which, as for ACh, gives rise firstly to an increase in intracellular Ca2+ concentration in the secretory pole. We propose that this polar rise in intracellular Ca2+ concentration is due to Ca(2+)-induced Ca2+ release. By contrast, when Ca2+ release and Ca2+ influx are induced in the absence of receptor activation by thapsigargin and ionomycin, the Ca2+ signal develops diffusely and slowly with no localization to the secretory pole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We tested the hypothesis that estrogen acutely stimulates constitutive NO synthase (cNOS) activity in human peripheral monocytes by acting on an estrogen surface receptor. NO release was measured in real time with an amperometric probe. 17beta-estradiol exposure to monocytes stimulated NO release within seconds in a concentration-dependent manner, whereas 17alpha-estradiol had no effect. 17beta-estradiol conjugated to BSA (E2-BSA) also stimulated NO release, suggesting mediation by a membrane surface receptor. Tamoxifen, an estrogen receptor inhibitor, antagonized the action of both 17beta-estradiol and E2-BSA, whereas ICI 182,780, a selective inhibitor of the nuclear estrogen receptor, had no effect. We further showed, using a dual emission microfluorometry in a calcium-free medium, that the 17beta-estradiol-stimulated release of monocyte NO was dependent on the initial stimulation of intracellular calcium transients in a tamoxifen-sensitive process. Leeching out the intracellular calcium stores abolished the effect of 17beta-estradiol on NO release. RT-PCR analysis of RNA obtained from the cells revealed a strong estrogen receptor-alpha amplification signal and a weak beta signal. Taken together, a physiological dose of estrogen acutely stimulates NO release from human monocytes via the activation of an estrogen surface receptor that is coupled to increases in intracellular calcium.  相似文献   

16.
Cells of the 7315a prolactin-secreting tumour express biochemically normal cell-surface receptors for dopamine. However, dopamine inhibits prolactin release from these cells only when the basal rate of prolactin release is augmented by increasing the intracellular and/or extracellular calcium concentration of the tumour cells. This suggests that dopaminergic modulation of calcium ion flux could have a central physiological role in these neoplastic cells. In 7315a cells we examined the ability of dopamine to regulate 45Ca2+ influx and fractional 45Ca2+ efflux under conditions of enhanced calcium flux using the calcium channel activator, maitotoxin. It was observed that unidirectional calcium influx stimulated by maitotoxin was significantly inhibited by dopamine. Maitotoxin stimulated fractional efflux and prolactin release from the tumour cells and dopamine simultaneously inhibited both processes by a haloperidol-reversible mechanism. Therefore, in 7315a cells dopamine receptor activation is coupled to inhibition of calcium flux as at least one component in the regulation of prolactin release. These cells may provide further opportunity to study intracellular signalling mechanisms that are modulated by dopamine receptor activity.  相似文献   

17.
Although the mechanism by which nicotinic receptors on adrenal chromaffin cells regulate catecholamine secretion is reasonably well understood, that of the muscarinic receptors remains obscure. The effects of both acetylcholine and specific muscarinic agonists on cytosolic free calcium in isolated bovine adrenal chromaffin cells have been measured using the fluorescent probe Quin-2. Acetylcholine (0.1 mM) evokes a large increase in cytosolic free calcium from resting levels near 100 nM into the microM range, most of which is blocked by hexamethonium (0.5 mM) or removal of extracellular calcium. A small component of the acetylcholine-evoked rise in cytosolic free calcium (approximately 50-100 nM) is independent of extracellular calcium and is unaffected by 0.5 mM hexamethonium, but is totally blocked by 0.5 microM atropine. The muscarinic nature of this component is further confirmed by the fact that the muscarinic agonists, muscarine (0.1 mM) and methacholine (0.3 mM), stimulate a 50-100 nM rise in chromaffin cell cytosolic calcium which is blocked by 0.5 microM atropine and is largely independent of extracellular calcium. These results suggest that muscarinic receptors regulate cytosolic calcium in chromaffin cells by a new mechanism different from that of nicotinic receptors, a mechanism utilizing an intracellular calcium source. The small size of the muscarinic-induced rise in cytosolic calcium in the bovine chromaffin cell would explain why no secretion is evoked by muscarinic agonists in this species.  相似文献   

18.
Rat Kupffer cells in monolayer culture were allowed to phagocytose unopsonized zymosan granules. They responded with a strongly stimulated synthesis and release of prostanoids, mainly the immunologically determined prostaglandins PGE2 and PGF2 alpha. The same response could be obtained by treatment with the calcium ionophore A23187. The effects of the ionophore and the zymosan particles were of the same magnitude but not additive. The rapid uptake of Ca2+ after contact with phagocytosable material recently described by us [(1983) Eur. J. Biochem. 131, 539-543] appears to mediate the enhanced prostaglandin synthesis. That response was suppressed not only by indomethacin but also by trifluoperazine which does not inhibit Ca2+ entry in the Kupffer cells. Similar effects by R24571 and 4-bromophenacyl bromide support the participation of calcium-calmodulin and of phospholipase A2. The calcium channel blocker Verapamil did not influence the zymosan-provoked production of prostaglandin PGE2 nor were any indications obtained for a feedback inhibition by PGE1 or PGE2. Contact with zymosan resulted in a rapid but transient rise of the intracellular levels of cAMP and cGMP: 10 nM indomethacin completely blocked the increase of both cyclic nucleotides while trifluoperazine elicited different responses in the cAMP and cGMP levels. The stimulated release of prostaglandin E2 was inhibited in a dose-dependent manner by nordihydroguaiaretic acid, an inhibitor of 5-lipoxygenase and by FPL 55712, known as a receptor antagonist for some leukotrienes. This suggests a regulatory role for its metabolites on prostaglandin synthesis.  相似文献   

19.
Fluorescent oxonol dyes were used to measure changes in the membrane potential of two different cell lines each expressing Pi-hydrolysis coupled muscarinic receptors. Both SK-N-SH human neuroblastoma cells and m1-transfected A9 L cells express muscarinic receptors, which, when stimulated, elicit a large increase in intracellular calcium, and release of inositol phosphates. Despite the similarity in this second-messenger response, muscarinic stimulation resulted in a hyperpolarization in the transfected A9 L cells whereas a small depolarization was observed in the neuroblastoma cells. The carbachol-mediated hyperpolarization of the transfected A9 L cells could be mimicked by increasing intracellular calcium with the ionophore A23187, suggesting, that it may be mediated by calcium-activated potassium channels. Exposure of SK-N-SH cells to A23187, on the other hand, had no effect on the membrane potential. These studies demonstrate that the activation of a second messenger system does not solely dictate the electrophysiological response of a cell, but that other factors such as the expression of ion-channels is critical in the determination of that response.  相似文献   

20.
Embryonic cells transiently express an embryonic muscarinic system during morphogenesis. Stimulation of the embryonic muscarinic receptor results in biphasic intracellular Ca2+ mobilization: an initial "peak" due to Ca2+ release from intracellular stores is followed by a sustained "plateau" of enhanced cytoplasmic Ca2+ due to influx of extracellular Ca2+. In the present investigation, we characterized the Ca2+ influx by measuring the cytoplasmic free Ca2+ concentration [Ca2+]i using the Ca2+ indicator fura-2: 1. The increase of [Ca2+]i during the plateau depended linearly on the logarithm of the extracellular calcium concentration whereas the initial peak was almost independent from extracellular calcium. 2. The organic Ca2+ entry blockers verapamil, gallopamil, nifedipine, nitrendipine and the inorganic blockers Mn2+, Mg2+ and La3+ were without effect on both phases of Ca2+ mobilization. Only Ni2+ at concentrations above 1 mM was able to reduce the influx without affecting the intracellular Ca2+ release. 3. Substitution of extracellular Na+ by guanidine+, choline+ or tris+ and membrane depolarisation by increasing the extracellular K+ concentration had no effect on either phase of Ca2+ mobilization. We conclude that a non-voltage dependent, receptor-operated influx mechanism, probably a "second messenger operated Ca2+ channel", is responsible for the Ca2+ influx after stimulation of the embryonic muscarinic receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号