首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In birds and mammals three isoforms of troponin I (TnI) exist; a slow (TnIs), a fast (TnIf) and a cardiac (TnIc). Although each of these isoforms is expressed in the adult forms of these organisms in a muscle fiber-type-specific manner, the gene encoding TnIs is also expressed within the developing heart of these vertebrates. Herein, our results demonstrate that the developing heart of Xenopus laevis, unlike its counterpart in birds and mammals, does not express the gene encoding the TnIs isoform and that the expression of this gene, as well as the one encoding the Xenopus TnIf isoform, is restricted to skeletal muscle.  相似文献   

2.
Skinned muscle fibers prepared from fetal rabbit heart (28 days of gestation) showed a marked resistance to acidic pH in the Ca(2+) regulation of force generation, compared to the fibers prepared from adult heart. SDS-PAGE and immunoblot analysis showed that the slow skeletal troponin I was predominantly expressed in the fetal cardiac muscle, while the cardiac isoform was predominantly expressed in the adult cardiac muscle. Direct exchange of purified slow skeletal and cardiac troponin I isoforms into these skinned muscle fibers revealed that cardiac troponin I made the Ca(2+) regulation of contraction sensitive to acidic pH just as in the adult fibers, whereas slow skeletal troponin I made the Ca(2+) regulation of contraction resistant to acidic pH just as in the fetal fibers. These results demonstrate that the troponin I isoform switching accounts fully for the change in the pH dependence of Ca(2+) regulation of contraction in developmental cardiac muscle.  相似文献   

3.
Troponin I switching in the developing heart   总被引:9,自引:0,他引:9  
Monoclonal antibodies identify two distinct isoforms of troponin I in rat cardiac muscle, one predominant in the embryonic and fetal heart and one predominant in the adult heart. The two isoforms can be resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with apparent molecular weights of 27,000 and 31,500, respectively. The adult isoform is specifically recognized by a monoclonal antibody that is unreactive with the embryonic variant, while two other monoclonal antibodies recognize both isoforms. A monoclonal antibody to cardiac troponin T was used to isolate by affinity chromatography the troponin complex from adult and neonatal rat heart. Affinity purified troponin from neonatal heart was found to contain both the embryonic and adult isoforms of troponin I. Comparative immunoblotting analysis with different muscle tissues shows that embryonic troponin I is identical with respect to electrophoretic mobility and pattern of immunoreactivity to the major troponin I isoform found in adult slow skeletal muscle. Troponin I switching may be implicated in developmental changes involving Ca2+ and pH sensitivity of the contractile system and response to beta-adrenergic stimulation.  相似文献   

4.
We have isolated and sequenced a cDNA encoding rat cardiac troponin I. The predicted amino acid sequence was highly identical with previously reported chemically derived amino acid sequences for rabbit and bovine cardiac troponin I. Clones for slow skeletal muscle troponin I were also obtained from neonatal rat cardiac ventricle by the polymerase chain reaction. The nucleotide sequences of these clones were determined to be more than 99% identical with a previously reported rat slow skeletal troponin I cDNA [Koppe et al. (1989) J. Biol. Chem. 264, 14327-14333]. The troponin I clones hybridized to RNA from the appropriate muscle from adult animals. However, RNA from fetal and neonatal rat heart also hybridized with the slow skeletal troponin I cDNA, demonstrating its expression in fetal and neonatal rat heart. Slow skeletal troponin I steady-state mRNA levels decreased with increasing age, but cardiac troponin I mRNA levels increased through fetal and early neonatal cardiac development. Thus, during fetal and neonatal development, slow skeletal and cardiac troponin I isoforms are coexpressed in the rat heart and regulated in opposite directions. The degree of primary sequence differences in these isoforms, especially at phosphorylation sites, may result in important functional differences in the neonatal myocardium.  相似文献   

5.
6.
The major goal of this study was to elucidate how troponin T (TnT) dilated cardiomyopathy (DCM) mutations in fetal TnT and fetal troponin affect the functional properties of the fetal heart that lead to infantile cardiomyopathy. The DCM mutations R141W and DeltaK210 were created in the TnT1 isoform, the primary isoform of cardiac TnT in the embryonic heart. In addition to a different TnT isoform, a different troponin I (TnI) isoform, slow skeletal TnI (ssTnI), is the dominant isoform in the embryonic heart. In skinned fiber studies, TnT1-wild-type (WT)-treated fibers reconstituted with cardiac TnI.troponin C (TnC) or ssTnI.TnC significantly increased Ca(2+) sensitivity of force development when compared with TnT3-WT-treated fibers at both pH 7.0 and pH 6.5. Porcine cardiac fibers treated with TnT1 that contained the DCM mutations (R141W and DeltaK210), when reconstituted with either cardiac TnI.TnC or ssTnI.TnC, significantly decreased Ca(2+) sensitivity of force development compared with TnT1-WT at both pH values. The R141W mutation, which showed no significant change in the Ca(2+) sensitivity of force development in the TnT3 isoform, caused a significant decrease in the TnT1 isoform. The DeltaK210 mutation caused a greater decrease in Ca(2+) sensitivity and maximal isometric force development compared with the R141W mutation in both the fetal and adult TnT isoforms. When complexed with cardiac TnI.TnC or ssTnI.TnC, both TnT1 DCM mutations strongly decreased maximal actomyosin ATPase activity as compared with TnT1-WT. Our results suggest that a decrease in maximal actomyosin ATPase activity in conjunction with decreased Ca(2+) sensitivity of force development may cause a severe DCM phenotype in infants with the mutations.  相似文献   

7.
In this study we investigated the physiological role of the cardiac troponin T (cTnT) isoforms in the presence of human slow skeletal troponin I (ssTnI). ssTnI is the main troponin I isoform in the fetal human heart. In reconstituted fibers containing the cTnT isoforms in the presence of ssTnI, cTnT1-containing fibers showed increased Ca(2+) sensitivity of force development compared with cTnT3- and cTnT4-containing fibers. The maximal force in reconstituted skinned fibers was significantly greater for the cTnT1 (predominant fetal cTnT isoform) when compared with cTnT3 (adult TnT isoform) in the presence of ssTnI. Troponin (Tn) complexes containing ssTnI and reconstituted with cTnT isoforms all yielded different maximal actomyosin ATPase activities. Tn complexes containing cTnT1 and cTnT4 (both fetal isoforms) had a reduced ability to inhibit actomyosin ATPase activity when compared with cTnT3 (adult isoform) in the presence of ssTnI. The rate at which Ca(2+) was released from site II of cTnC in the cTnI.cTnC complex (122/s) was 12.5-fold faster than for the ssTnI.cTnC complex (9.8/s). Addition of cTnT3 to the cTnI.cTnC complex resulted in a 3.6-fold decrease in the Ca(2+) dissociation rate from site II of cTnC. Addition of cTnT3 to the ssTnI.cTnC complex resulted in a 1.9-fold increase in the Ca(2+) dissociation rate from site II of cTnC. The rate at which Ca(2+) dissociated from site II of cTnC in Tn complexes also depended on the cTnT isoform present. However, the TnI isoforms had greater effects on the Ca(2+) dissociation rate of site II than the cTnT isoforms. These results suggest that the different N-terminal TnT isoforms would produce distinct functional properties in the presence of ssTnI when compared with cTnI and that each isoform would have a specific physiological role in cardiac muscle.  相似文献   

8.
Thin filament proteins tropomyosin (Tm), troponin T (TnT), and troponin I (TnI) form an allosteric regulatory complex that is required for normal cardiac contraction. Multiple isoforms of TnT, Tm, and TnI are differentially expressed in both cardiac development and disease, but concurrent TnI, Tm, and TnT isoform switching has hindered assignment of cellular function to these transitions. We systematically incorporated into the adult sarcomere the embryonic/fetal isoforms of Tm, TnT, and TnI by using gene transfer. In separate experiments, greater than 90% of native TnI and 40-50% of native Tm or TnT were specifically replaced. The Ca(2+) sensitivity of tension development was markedly enhanced by TnI replacement but not by TnT or Tm isoform replacement. Titration of TnI replacement from >90% to <30% revealed a dominant functional effect of slow skeletal TnI to modulate regulation. Over this range of isoform replacement, TnI, but not Tm or TnT embryonic isoforms, influenced calcium regulation of contraction, and this identifies TnI as a potential target to modify contractile performance in normal and diseased myocardium.  相似文献   

9.
Troponin T switching in the developing rat heart   总被引:6,自引:0,他引:6  
A monoclonal antibody specific for cardiac troponin T has been used to investigate troponin changes during development in the rat heart. Specificity of the antibody was determined by immunoblot analysis with purified bovine cardiac troponin. In the rat heart, immunoblot analysis shows that anticardiac troponin T reacts with a 42.5-kDa band in fetal ventricles and with a 41-kDa band in adult ventricles. The faster migrating troponin T is present in traces in the fetal heart and increases markedly during the first 2 weeks after birth, concomitantly with the progressive decrease of the slower migrating form that is no longer detectable in the adult. The pattern of reactivity of the monoclonal antibody is not modified by alkaline phosphatase pretreatment, suggesting that the antibody is not specific for a phosphorylated epitope. Conditions known to affect cardiac myosin composition, such as hypothyroidism and hypertrophy secondary to systemic hypertension, do not change the troponin T isoform profile of adult rat ventricles. The expression and accumulation of the adult isoforms of troponin T are not suppressed by propylthiouracil treatment of pregnant and nursing rats.  相似文献   

10.
Restrictive cardiomyopathy (RCM) is a rare disorder characterized by impaired ventricular filling with decreased diastolic volume. We are reporting the functional effects of the first cardiac troponin T (CTnT) mutation linked to infantile RCM resulting from a de novo deletion mutation of glutamic acid 96. The mutation was introduced into adult and fetal isoforms of human cardiac TnT (HCTnT3-DeltaE96 and HCTnT1-DeltaE106, respectively) and studied with either cardiac troponin I (CTnI) or slow skeletal troponin I (SSTnI). Skinned cardiac fiber measurements showed a large leftward shift in the Ca(2+) sensitivity of force development with no differences in the maximal force. HCTnT1-DeltaE106 showed a significant increase in the activation of actomyosin ATPase with either CTnI or SSTnI, whereas HCTnT3-DeltaE96 was only able to increase the ATPase activity with CTnI. Both mutants showed an impaired ability to inhibit the ATPase activity. The capacity of the CTnI.CTnC and SSTnI.CTnC complexes to fully relax the fibers after TnT displacement was also compromised. Experiments performed using fetal troponin isoforms showed a less severe impact compared with the adult isoforms, which is consistent with the cardioprotective role of SSTnI and the rapid onset of RCM after birth following the isoform switch. These data indicate that troponin mutations related to RCM may have specific functional phenotypes, including large leftward shifts in the Ca(2+) sensitivity and impaired abilities to inhibit ATPase and to relax skinned fibers. All of this would account for and contribute to the severe diastolic dysfunction seen in RCM.  相似文献   

11.
Titin isoform changes in rat myocardium during development   总被引:3,自引:0,他引:3  
Developmental changes in the alternative splicing patterns of titin were observed in rat cardiac muscle. Titin from 16-day fetal hearts consisted of a single 3710 kDa band on SDS agarose gels, and it disappeared by 10 days after birth. The major adult N2B isoform (2990 kDa) first appeared in 18-day fetal hearts and its proportion in the ventricle increased to approximately 85% from 20 days of age and older. Changes in three other intermediate-sized N2BA isoform bands also occurred during this same time period. The cDNA sequences of fetal cardiac, adult ventricle, and adult soleus were different in the PEVK and alternatively spliced middle Ig domain. Extensive heterogeneity in splice patterns was found in the N2BA PEVK region. The extra length of the fetal titin isoforms appeared to be due to both a greater number of middle Ig domains expressed plus the inclusion of more PEVK exons. Passive tension measurements on myocyte-sized fragments indicated a significantly lower tension in neonate versus adult ventricles at sarcomere lengths greater than 2.1 microm, consistent with the protein and cDNA sequence results. The time course of the titin isoform switching was similar to that occurring with myosin and troponin I during development.  相似文献   

12.
The heterotrimeric cardiac troponin complex is a key regulator of contraction and plays an essential role in conferring Ca2+ sensitivity to the sarcomere. During ischemic injury, rapidly accumulating protons acidify the myoplasm, resulting in markedly reduced Ca2+ sensitivity of the sarcomere. Unlike the adult heart, sarcomeric Ca2+ sensitivity in fetal cardiac tissue is comparatively pH insensitive. Replacement of the adult cardiac troponin I (cTnI) isoform with the fetal troponin I (ssTnI) isoform renders adult cardiac contractile machinery relatively insensitive to acidification. Alignment and functional studies have determined histidine 132 of ssTnI to be the predominant source of this pH insensitivity. Substitution of histidine at the cognate position 164 in cTnI confers the same pH insensitivity to adult cardiac myocytes. An alanine at position 164 of cTnI is conserved in all mammals, with the exception of the platypus, which expresses a proline. Prolines are biophysically unique because of their innate conformational rigidity and helix-disrupting function. To provide deeper structure-function insight into the role of the TnC-TnI interface in determining contractility, we employed a live-cell approach alongside molecular dynamics simulations to ascertain the chemo-mechanical implications of the disrupted helix 4 of cTnI where position 164 exists. This important motif belongs to the critical switch region of cTnI. Substitution of a proline at position 164 of cTnI in adult rat cardiac myocytes causes increased contractility independent of alterations in the Ca2+ transient. Free-energy perturbation calculations of cTnC-Ca2+ binding indicate no difference in cTnC-Ca2+ affinity. Rather, we propose the enhanced contractility is derived from new salt bridge interactions between cTnI helix 4 and cTnC helix A, which are critical in determining pH sensitivity and contractility. Molecular dynamics simulations demonstrate that cTnI A164P structurally phenocopies ssTnI under baseline but not acidotic conditions. These findings highlight the evolutionarily directed role of the TnI-cTnC interface in determining cardiac contractility.  相似文献   

13.
The development of the adult cardiac troponin complex in conjunction with changes in cardiac function and cardiomyocyte binucleation has not been systematically characterized during fetal life in a species where maturation of the cardiomyocytes occurs prenatally as it does in the human. The aim of this study was to correlate the expression of each of the major adult troponin isoforms (T, I, and C) during late gestation (term of 150 days) to changes in both Ca(2+) sensitivity and maximum Ca(2+)-activated force of the contractile apparatus and the maturation of cardiomyocytes. The percentage of mononucleated cardiomyocytes in the right ventricle decreased with gestational age to 46% by 137-142 days of gestation. The length of binucleated cardiomyocytes did not change with gestational age, but the length of binucleated cardiomyocytes relative to heart weight decreased with gestational age. There was no change in the expression of adult cardiac troponin T with increasing gestation. The contractile apparatus was significantly more sensitive to Ca(2+) at 90 days compared with either 132 or 139 days of gestation, consistent with an ~30% increase in the expression of adult cardiac troponin I between 90 and 110 days of gestation. Maximum Ca(2+)-activated force significantly increased from 90 days compared with 130 days consistent with an increase of ~40% in cardiac troponin C protein expression. These data show that increased adult cardiac troponin I and C protein expression across late gestation is consistent with reduced Ca(2+) sensitivity and increased maximum Ca(2+)-activated force. Furthermore, changes in cardiac troponin C, not I, protein expression track with the timing of cardiomyocyte binucleation.  相似文献   

14.
Troponin I is the putative molecular switch for Ca(2+)-activated contraction within the myofilament of striated muscles. To gain insight into functional troponin I domain(s) in the context of the intact myofilament, adenovirus-mediated gene transfer was used to replace endogenous cardiac troponin I within the myofilaments of adult cardiac myocytes with the slow skeletal isoform or a chimera of the slow skeletal and cardiac isoforms. Efficient expression and myofilament incorporation were observed in myocytes with each exogenous troponin I protein without detected changes in the stoichiometry of other contractile proteins and/or sarcomere architecture. Contractile function studies in single, permeabilized myocytes expressing exogenous troponin I provided support for the presence of a Ca(2+)-sensitive regulatory domain in the carboxyl terminus of troponin I and a second, newly defined Ca(2+)-sensitive domain residing in the amino terminus of troponin I. Additional experiments demonstrated that the isoform-specific, acidic pH-induced contractile dysfunction in myocytes appears to lie in the carboxyl terminus of troponin I. Functional results obtained from adult cardiac myocytes expressing the chimera or isoforms of troponin I now define multiple troponin I regulatory domains operating in the intact myofilament and provide new insight into the Ca(2+)-sensitive properties of troponin I during contraction.  相似文献   

15.
The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart.  相似文献   

16.
The organization of troponin I (TnI) genes from the ascidian Halocynthia roretzi have been determined. Halocynthia possesses roughly two types of TnI isoforms. One type is a single-copied adult TnI (adTnI) gene, which contains eight exons and seven introns. adTnI expresses two isoforms, the shorter body wall muscle TnI and the longer cardiac TnI, through alternative splicing. The mRNAs of these TnI isoforms may undergo trans-splicing of the 5'-leader sequences, like the TnI mRNA of another ascidian species, Ciona intestinalis. The other type comprises multi-copied larval TnI (laTnI) genes. Halocynthia has at least three laTnIs (alpha, beta, and gamma), which are composed of five exons and four introns, and two of them (alpha and gamma) are clustered in tandem. All laTnIs have B- and M-regions within their 5'-upstream regions, which have been discovered to be the regulatory elements of Halocynthia larval actin genes. The expression of Halocynthia laTnIs and larval actins may be regulated in the same manner. It is known that Ciona does not possess a larva-specific TnI isoform. The phylogenetic tree of ascidian TnIs suggests that laTnIs might have only been generated within the Pleurogona lineage after Enterogona/Pleurogona divergence, and this scenario well agrees with the absence of laTnIs in Ciona.  相似文献   

17.
《Gene》1997,193(1):105-114
Large samples of original cDNAs encoding neonatal and adult mouse fast skeletal muscle troponin T (fTnT) have been isolated and characterized. The results demonstrate expression relationships of 8 alternatively spliced exons of the fTnT gene and reveal the primary structure of as many as 13 fTnT isoforms that diverge into acidic and basic classes due to differential mRNA splicing in the N-terminal variable region. In the C-terminal variable region encoded by the mutually exclusive exons 16 and 17, the splicing pathway and structure of exon 16 appears to be adult fTnT-specific, suggesting an adaptation to the functional demands of mature fast skeletal muscle. The cloned cDNAs were expressed in E. coli as standards to identify a high Mr to low Mr, acidic to basic fTnT isoform transition in postnatal developing skeletal muscles. Different from the developmental cardiac TnT switch generated by alternative splicing of a single exon, the fTnT isoform transition is an additive effect of alternative splicing of multiple N-terminal-coding exons, especially exons 4, 8 and fetal that are expressed at higher frequencies in the neonatal than in the adult muscle. The developmental fTnT isoform primary structure transition in both N- and C-terminal variable regions suggest a physiological importance of the apparently complex TnT isoform expression.  相似文献   

18.
Fetal rat skeletal muscles express a troponin T (TnT) isoform similar to the TnT isoform expressed in the embryonic heart with respect to electrophoretic mobility and immunoreactivity with cardiac TnT-specific monoclonal antibodies. Immunoblotting analyses reveal that both the embryonic and the adult isoforms of cardiac TnT are transiently expressed during the neonatal stages. In addition, other TnT species, different from both cardiac TnTs and from the TnT isoforms expressed in adult muscles, are present in skeletal muscles during the first two postnatal weeks. By immunocytochemistry, cardiac TnT is detectable at the somitic stage and throughout embryonic and fetal development, and disappears during the first weeks after birth, persisting exclusively in the bag fibers of the muscle spindles. Cardiac TnT is re-expressed in regenerating muscle fibers following a cold injury and in mature muscle fibers after denervation. Developmental regulation of this TnT variant is not coordinated with that of the embryonic myosin heavy chain with respect to timing of disappearance and cellular distribution. No obligatory correlation between the two proteins is likewise found in regenerating and denervated muscles.  相似文献   

19.
We review development of evidence and current perceptions of the multiple and significant functions of cardiac troponin I in regulation and modulation of cardiac function. Our emphasis is on the unique structure function relations of the cardiac isoform of troponin I, especially regions containing sites of phosphorylation. The data indicate that modifications of specific regions cardiac troponin I by phosphorylations either promote or reduce cardiac contractility. Thus, a homeostatic balance in these phosphorylations is an important aspect of control of cardiac function. A new concept is the idea that the homeostatic mechanisms may involve modifications of intra-molecular interactions in cardiac troponin I.  相似文献   

20.
We have examined the types of fast myosin heavy chains (MHCs) expressed in a number of different developing chicken skeletal muscles by combining peptide mapping and immunoblotting to identify fast MHC-specific peptides among the total mixture of MHC digestion products. Using this technique, we have identified three different fast MHC patterns among the different fast and mixed (i.e., fast and slow) fiber type muscles of the adult. While the different muscles all underwent sequential changes in fast MHC isoform expression during their development, the exact sequence of these changes and the isoform patterns expressed varied from muscle to muscle. During late embryonic or fetal development, all muscles expressed a similar fast MHC pattern (designated here as the fetal pattern) which was replaced shortly after hatching with a different fast MHC pattern (the neonatal pattern). During the transition from the neonatal to the adult state that occurred sometime in the first year after hatching, many of the muscles underwent additional changes in fast MHC isoform expression. In muscles such as the pectoralis major and pectoralis minor, a new fast MHC isoform pattern was seen in the adult so that the developmental program of isoform switching in these muscles involved the sequential appearance of distinct fetal, neonatal, and adult fast MHCs. Other muscles, such as the sartorius and posterior latissimus dorsi, underwent a qualitatively different program of isoform switching and expressed as an adult a fast MHC pattern that was indistinguishable from that expressed during fetal development. Finally, in some muscles, such as the superficial biceps, no change in isoform pattern was detected during the neonatal to adult transition--in these muscles, expression of the neonatal MHC isoform pattern apparently persisted into the adult state. These data indicate that no single scheme or program of fast MHC isoform switching can describe all the developmental changes that occur in fast MHC isoform expression in the chicken and that at least three different programs of isoform switching and expression can be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号