首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The respiration of Ehrlich ascites tumor cells is inhibited by 3-ethoxy-2-oxobutyraldehyde bis (thiosemicarbazanato) copper (II). State 3 oxidative phosphorylation in mitochondria from tumor cells is also inhibited, with the effect more pronounced using glutamate or pyruvate-malate as substrates than with succinate. The disruption of oxidative phosphorylation in bovine heart mitochondria is qualitatively similar. The principal site of inhibition is in coupling site one, energetically between the electron transport site chain and the locus of uncoupling by 2,4-dinitrophenol. This appears to contain thiol groups which are oxidized by the complex. For a series of bis (thiosemicarbazonato) copper complexes, the extent of inhibition of heart mitochondrial oxidative phosphorylation is correlated with the reduction potentials of the complexes and with their in vitro cytotoxic effects against Walker 256 carcinoma tumor cells.  相似文献   

2.
The synthesis of new copper(II) bis(thiosemicarbazonato) complexes with an appended pyrene chromophore and their zinc(II) analogues is reported. The new proligands and their copper(II) and zinc(II) complexes were characterised by a combination of NMR, EPR, high performance liquid chromatography, mass spectrometry, electronic spectroscopy and electrochemical measurements. The new copper(II) complexes are fluorescent as a consequence of an appended pyrene substituent that is separated from the sulphur coordinating to the metal ion by five bonds. The emission from the pyrene substituent is concentration- and solvent-dependent with characteristic formation of excimer aggregates. A radioactive 64Cu complex has been prepared. Cell permeability, intracellular distribution and importantly the ability to cross the nuclear membrane to target DNA were investigated using confocal fluorescence microscopy in a human cancer cell line under normal oxygen conditions and hypoxic conditions. In both cases, there was no evidence of uptake of the copper(II) bis(thiosemicarbazonato) complexes in the area of the cell nucleus.  相似文献   

3.
The copper complex of 3-ethoxy-2-oxobutyraldehyde bis(thiosemicarbazone) or CuKTS is reduced and dissociated upon reaction with Ehrlich cells. Titration of the cells with the complex leads to the specific binding of copper to metallothionein with 1 to 1 displacement of its complement of zinc. Under conditions of complete titration of metallothionein, 1.25-2.5 nmol CuKTS/10(7) cells, cellular DNA synthesis is rapidly inhibited but no long term effects on cell proliferation are observed. The kinetics of redistribution of Cu and Zn in Ehrlich cells in culture and in animals were studied after pulse reaction of CuKTS with cells. After exposure of cells to the noncytotoxic concentration of 2.5 nmol of CuKTS/10(7) cells, nonmetallothionein bound copper is lost rapidly from the cells, after which copper in metallothionein decays. New zinc metallothionein is made as soon as exposed cells are placed in culture. New synthesis stops when the level of zinc in metallothionein reaches control levels. A second pulse treatment of cells with CuKTS to displace zinc from metallothionein again stimulates new synthesis of the protein to restore its normal concentration. The kinetics of metal metabolism in Ehrlich cells exposed to 5.5 nmol of CuKTS/10(7) cells, which inhibits cell proliferation, are qualitatively similar except there is a pronounced lag before new zinc metallothionein is synthesized. The Ehrlich ascites tumor in mice responds to CuKTS similarly to cells in culture. It is also shown that cultured Ehrlich cells do not make extra zinc metallothionein in the presence of high levels of ZnCl2, and fail to accumulate copper in the presence of large concentrations of CuCl2.  相似文献   

4.
Protamine sulfate, an inhibitor of angiogenesis in vivo, markedly inhibits the ability of angiogenic factors such as acidic or basic fibroblast growth factor (aFGF, bFGF) to stimulate the proliferation in vitro of either BHK-21 cells or vascular endothelial cells. The inhibition is reversible, and cells remain viable even after prolonged exposure to protamine sulfate. Protamine sulfate inhibits the mitogenic effects of both growth factors by preventing them from binding to their common cell surface receptors. It also inhibits the mitogenic activity of the extracellular matrix produced by bovine corneal endothelial cells. This substrate has been shown in previous studies to replace the requirement for FGF of many cell types. In contrast, protamine sulfate potentiates the mitogenic activity of epidermal growth factor (EGF). This indicates that protamine sulfate also acts at cellular sites which are not associated with FGF receptors.  相似文献   

5.
The properties of Ehrlich ascites tumour cells exposed in vivo to cadmium were investigated as a function of the zinc status of the host animals. Tumour-cell growth was inhibited by cadmium in both zinc-sufficient and zinc-deficient animals. However, cells in zinc-sufficient tumours accumulate much less cadmium than those in deficient tumours. The subcellular distributions of cadmium and zinc do not depend on zinc status. Cadmium and zinc are bound to a low-molecular-weight protein with properties similar to metallothionein. Without exposure to cadmium, a zinc- and copper-binding protein is still present that behaves like a metallothionein. This protein can rapidly bind cadmium added to Ehrlich cells in vitro. It is shown that the zinc- and copper-binding protein contains free thiol groups. Ehrlich cells isolated from cadmium-treated animals are viable and show normal incorporation of uridine into RNA, but the cellular uptake of thymidine and its incorporation into DNA are inhibited.  相似文献   

6.
Cadmium has been implicated in the increase in prostate cancer incidence in men exposed to high levels. A decrease in zinc and a concomitant increase in cadmium levels in the human prostate has been shown. The role and mechanism of cadmium action in prostate carcinogenesis is not clear. Selenium, on the other hand, has been shown to inhibit carcinogenesis in several animal systems. Results show that cadmium stimulates the growth of human prostatic epithelium in vitro, between 10(-9) M and 10(-7) M concentrations. Selenium, at concentrations between 10(-12) M and 10(-7) M shows no growth stimulatory or inhibitory effects on these cells. However, when present at 10(-8) M level, selenium inhibits the growth stimulation induced by cadmium. These results suggest that selenium may be useful in counteracting the effects of cadmium in the human prostate and offer possibilities for investigations on the protective effects of selenium in cadmium-related carcinogenesis in man.  相似文献   

7.
Cellular transformation may be accomplished in vitro and in vivo through the concerted action of growth factors and oncogenes. This association has demonstrated that malignant growth results from aberrations in growth factor-signal transduction pathways that normally operate to control proliferation. Activation of genes that code for growth factors and/or their receptors provides tumor cells with potential mechanisms to maintain their proliferative state. Tumor cells have been shown to produce endogenous substances that augment their growth (autocrine stimulation), as well as responding to exogenous substances (paracrine stimulation). With solid tumor cells these responses have been shown to involve aberrant expression of growth factor and/or receptor genes. The study of the interrelationship of these various growth regulatory molecules is important not only in the identification of gene products essential to cellular proliferation, but also in providing clues as to what forces are driving tumor cell growth.  相似文献   

8.
Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth   总被引:10,自引:0,他引:10  
Thrombospondin-1 (TSP-1) is a matricellular glycoprotein that influences cellular phenotype and the structure of the extracellular matrix. These effects are important components of the tissue remodeling that is associated with angiogenesis and neoplasia. The genetic mutations in oncogenes and tumor suppressor genes that occur within tumor cells are frequently associated with decreased expression of TSP-1. However, the TSP-1 that is produced by stromal fibroblasts, endothelial cells and immune cells suppresses tumor progression. TSP-1 inhibits angiogenesis through direct effects on endothelial cell migration and survival and through indirect effects on growth factor mobilization. TSP-1 that is present in the tumor microenvironment also acts to suppress tumor cell growth through activation of transforming growth factor β in those tumor cells that are responsive to TGFβ. In this review, the molecular basis for the role of TSP-1 in the inhibition of tumor growth and angiogenesis is summarized.  相似文献   

9.
The use of cultured cells has been instrumental in studying biochemical, molecular, and cellular processes. The composition of serum that cells are maintained in can have a profound impact on important cellular checkpoints. Cell growth and apoptosis are analyzed in an estrogen receptor positive breast cancer cell line in the presence of serum that have been treated to remove steroids or lipids, as well‐described in the literature. It is shown that maintaining cells in the presence of charcoal‐dextran‐treated serum causes reduced growth rate, which can be reversed by the addition of estradiol. Silica‐treated‐serum also slows down cell growth and induces apoptosis. In order to investigate the role of lipids in these phenotypes, the levels of a wide range of lipids in different sera are investigated. It is shown that silica‐treatment significantly depletes phosphatidylcholines and cholesterol. It is also shown that lipogenesis is stimulated when cells are cultured with silica‐treated‐serum and this is reversed by the addition of exogenous lipids, which also restores growth rate and apoptosis. The results show that cultured cells are sensitive to different serum, most likely due to the differences in levels of structural and signaling metabolites present in their growth environment.  相似文献   

10.
Role of thymidine phosphorylase in Fas-induced apoptosis   总被引:2,自引:0,他引:2  
Mori S  Takao S  Ikeda R  Noma H  Mataki Y  Wang X  Akiyama S  Aiko T 《Human cell》2001,14(4):323-330
Thymidine phosphorylase (TP) has chemotactic and angiogenic activity in vitro, and it promotes tumor growth and inhibits apoptosis in vivo. It plays a key role in the invasiveness and metastasis of TP-expressing solid tumors. KB/TP cells transfected with a TP cDNA have been shown to be resistant to hypoxia-induced apoptosis, suggesting that TP has effects on tumor growth and cell death independent of its effects on angiogenesis. However, the mechanisms of cell death inhibition by TP are unknown. In the present study, we demonstrate that caspase-8 is cleaved in control transfectant KB cells early on during Fas-induced apoptosis. Caspase-8 activation leads to the loss of mitochondrial membrane potential, followed by the release of cytochrome c, the activation of caspase-3, and apoptosis. In contrast, Fas-induced caspase-8 cleavage is inhibited in KB/TP cells, which lead to inhibition of the downstream apoptotic cascade and inhibition of apoptosis. These findings indicate that TP plays an important role in intracellular apoptotic signal transduction in the Fas-induced apoptotic pathway. Therefore, inhibition of TP may suppress the progression of TP-overexpressing solid tumors by inducing apoptosis.  相似文献   

11.
Adiponectin is an adipocytokine involved in the pathogenesis of various obesity-related disorders. Also, it has been shown that adiponectin has therapeutic potential for metabolic syndrome, systemic insulin resistance, cardiovascular disease and more recently carcinogenesis. Adiponectin can modulate breast cancer cell growth and proliferation. Anti-metastatic effects of adiponectin have also been elucidated. It has been shown that adiponectin inhibits important metastatic properties such as adhesion, invasion and migration of breast cancer cells. Examination of the underlying molecular mechanisms has shown that adiponectin treatment increases AMP-activated protein kinase (AMPK) phosphorylation and activity. Adiponectin also increases phosphorylation of downstream target of AMPK, Acetyl-CoA Carboxylase (ACC) and decreases phosphorylation of p70S6 kinase (S6K). Importantly, adiponectin treatment increases the expression of tumor suppressor gene, LKB1 in breast cancer cells. LKB1 is required for adiponectin-mediated modulation of AMPK-S6K axis and more importantly, its biological functions including inhibition of adhesion, migration and invasion of breast cancer cells. Although further studies are required to analyze the effect of adiponectin on LKB1-AMPK-S6K axis, these data present a novel mechanism involving specific upregulation of tumor suppressor gene LKB1 by which adiponectin inhibits adhesion, invasion and migration of breast cancer cells. These results highlight a new role for LKB1 in adiponectin action and may have significant implication for development of novel therapeutic options.Cancer research has largely focused on the molecular basis of oncogenic transformation and tumorigenesis for many years. Recent progress in cancer research has put the metastatic process at the center stage because higher metastatic potential of tumor cells is the major cause of mortality from solid tumors. Metastasis is a complex process that involves modulation of various molecular signaling networks. Tumor cells alter the microenvironment, attain greater cellular adhesion along with better ability to invade and migrate to gain access to circulation. These wandering tumor cells defy anoikis, survive in the circulation, exit into new permissive organ site and colonize distant organs.1 The microenvironment in which the tumor originates plays an important role in tumor initiation, progression and metastasis.Key words: adiponectin, LKB1, invasion, migration, cancer, AMPK, S6K  相似文献   

12.
《Inorganica chimica acta》2007,360(9):2973-2982
Syntheses and crystal structures of two molecular, heteroleptic cadmium complexes with CdS2NO2 and CdS2N2 kernels are described. Bis(tri-tert-butoxysilanethiolate)(1-methylimidazole)cadmium(II) and bis(tri-tert-butoxysilanethiolate)bis(1-methylimidazole)cadmium(II) coexist at equilibrium in chloroform solutions with varying concentrations of bis[bis(tri-tert-butoxysilanethiolate)cadmium(II)] and 1-methylimidazole. The equilibrium is characterized by solution 113Cd NMR spectra. Solid state CP MAS 13C, 29Si, 113Cd NMR data for the complexes are also reported, analyzed and compared with the results obtained for cadmium-substituted proteins. The similarities and differences between the structures of cadmium complexes and their zinc analogues are discussed.  相似文献   

13.
The growth of DU-145 human prostate carcinoma cells is reduced to 50% of control by 1 X 10(-6) M to 2 X 10(-6) M selenium and to 2% of control at 10(-4)M selenium. These cells show greater sensitivity to inhibition of growth or DNA synthesis by selenium than human W1-38 and HeLa cells and mouse mammary tumor cells. It has been shown that selenium inhibits carcinogenesis and reduces the incidence of chemical carcinogen and virus-induced tumors of a variety of organs in animals. Selenium may also inhibit the growth of certain tumor cells of non-human origin. To our knowledge, this is the first study on the effects of selenium on the growth of human tumor cells. From extrapolation, it is deduced that selenium serum levels in humans living in high selenium areas may be as high as 10(-6) M and could be effective in inhibiting the growth of tumor cells in vivo. These findings have implications in the prevention and intervention of prostate cancer in man.  相似文献   

14.
Vitamin D and its metabolites are best known for their actions in calcium and bone metabolism. However, epidemiological studies have suggested that an increased prostate cancer risk is associated with decreased production of vitamin D. In vitro and in vivo studies have shown that the biologically active form of vitamin D, 1alpha,25-dihydroxyvitamin D3 (1,25D), inhibits proliferation of cancer cells derived from multiple tissues, including the prostate. Although the mechanisms underlying the growth inhibitory effects of 1,25D have not been fully elucidated, in prostate cancer cells 1,25D reduces cell growth via a number of cellular pathways, including cell cycle arrest, induction of apoptosis, and altered activation of growth factor signaling. The hypercalcemia induced by 1,25D in vivo limits its use clinically as a therapeutic agent. However, several 1,25D analogs have been developed that reduce prostate tumor growth in rodent xenograft models without causing hypercalcemia. Additional studies are required in order to determine whether these 1,25D analogs will be useful therapeutic agents for the treatment of prostate cancer.  相似文献   

15.
Brain tumors such as neuroblastomas and gliomas are often refractory to current treatments. Development of metal-based drugs may offer an alternative approach due to the ability to deliver radionuclides or cytotoxic metals to the tumor. Previous studies have shown that diacetyl-bis(N(4)-methylthiosemicarbazonato)-copper(II) (CuII(atsm)) can selectively target hypoxic tumors and this feature has been utilized for development of imaging and radiotherapy. However, we have recently shown that glyoxal-bis(N(4)-methylthiosemicarbazonato)-copper(II) (CuII(gtsm)) can target the brain in animal models of neurodegeneration. Unlike CuII(atsm), CuII(gtsm) is able to release Cu intracellularly under normoxic conditions. Glyoxal-bis(thiosemicarbazones) have reported anticancer effects but little is known about the cellular mechanisms involved. Therefore, in this study, we used protein microarray analysis to investigate the effect of CuII(gtsm) on neuroblastoma cell growth in vitro. Treatment of the human neuroblastoma cell line BE(2)-M17, resulted in cell cycle arrest as assessed by fluorescent activated cell sorting (FACS) analysis. Rapidly arrested growth was not associated with onset of apoptosis. Instead, protein microarray analysis revealed that CuII(gtsm) rapidly and potently reduced cyclin D1 expression, while increasing Kip2 expression. Other changes observed were decreased Cdk7 expression and activation of CHK2. These changes may be associated with the cell cycle arrest. We also observed a potent decrease of total and phosphorylated insulin-like growth factor receptor (IGF-IR) by CuII(gtsm) which is associated with modulation of cyclin D1 expression. Our studies reveal important insights into the potential anticancer activity of CuII(gtsm). Further studies are needed to examine the therapeutic potential of CuII(gtsm) and other bis(thiosemicarbazonato) metal complexes as metallo-drugs for treatment of systemic or brain tumors.  相似文献   

16.
17.
The synthesis of three bis(thiosemicarbazone) compounds formed by the reaction of benzil with either thiosemicarbazide, 4-methyl-3-thiosemicarbazide or 4-phenyl-3-thiosemicarbazide are reported. The compounds were characterised by NMR spectroscopy, mass spectrometry and in the case of benzil bis(4-methyl-3-thiosemicarbazone) and benzil bis(4-phenyl-3-thiosemicarbazone) by X-ray crystallography. Attempts to purify benzil bis(thiosemicarbazone) and benzil bis (4-methyl-3-thiosemicarbazone) by recrystallisation resulted in the isolation of cyclised products that were characterised by X-ray crystallography. The 3 bis(thiosemicarbazone) compounds were used to synthesise both Cu(II) and Cu(I) complexes. The copper(II) complexes were formed by the reaction of the proligands with copper(II) acetate which gave neutral copper(II) complexes in which the thiosemicarbazone is doubly deprotonated, acting as a dianionic ligand. The copper(II)-benzil bis(4-phenyl-3-thiosemicarbazonato) complex was characterised by X-ray crystallography to show the copper in an essentially square planar N2S2 environment. The copper(I) complexes were synthesised by reacting the bis (thiosemicarbazone) ligands with [Cu(CH3CN)4]PF6 to give cationic complexes. The copper(I)-benzil-bis(thiosemicarbazone) complex was characterised by X-ray crystallography which revealed that the complex was a dimeric dication. Each of the benzil bis(thiosemicarbazone) ligands act as a bidentate N,S donor to each copper(I) atom, forming an overall helical structure in which each copper atom is in a strongly distorted tetrahedral N2S2 environment. Electrochemical measurements show that the copper(II)-benzil bis(thiosemicarbazonato) complex undergoes a reversible reduction at biologically accessible potentials.  相似文献   

18.
19.
The dynamics of a growing tumor involving mechanical remodeling of healthy tissue and vasculature is neglected in most of the existing tumor models. This is due to the lack of efficient computational framework allowing for simulation of mechanical interactions. Meanwhile, just these interactions trigger critical changes in tumor growth dynamics and are responsible for its volumetric and directional progression. We describe here a novel 3-D model of tumor growth, which combines particle dynamics with cellular automata concept. The particles represent both tissue cells and fragments of the vascular network. They interact with their closest neighbors via semi-harmonic central forces simulating mechanical resistance of the cell walls. The particle dynamics is governed by both the Newtonian laws of motion and the cellular automata rules. These rules can represent cell life-cycle and other biological interactions involving smaller spatio-temporal scales. We show that our complex automata, particle based model can reproduce realistic 3-D dynamics of the entire system consisting of the tumor, normal tissue cells, blood vessels and blood flow. It can explain phenomena such as the inward cell motion in avascular tumor, stabilization of tumor growth by the external pressure, tumor vascularization due to the process of angiogenesis, trapping of healthy cells by invading tumor, and influence of external (boundary) conditions on the direction of tumor progression. We conclude that the particle model can serve as a general framework for designing advanced multiscale models of tumor dynamics and it is very competitive to the modeling approaches presented before.  相似文献   

20.
Andrea Hartwig 《Biometals》2010,23(5):951-960
Cadmium is an environmental pollutant, with relevant exposures at workplaces and in the general population. The carcinogenicity has been long established, most evident for tumors in the lung and kidney, but with increasing evidence also for other tumor locations. While direct interactions with DNA appear to be of minor importance, the interference with the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis have been demonstrated in diverse experimental systems. With respect to DNA repair processes, cadmium has been shown to disturb nucleotide excision repair, base excision repair and mismatch repair; consequences are increased susceptibility towards other DNA damaging agents and endogenous mutagens. Furthermore, cadmium induces cell proliferation, inactivates negative growth stimuli, such as the tumor suppressor protein p53, and provokes resistance towards apoptosis. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development. Future research needs to clarify the relevance of these interactions for low exposure conditions in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号