首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Yi M  Lemon SM 《Journal of virology》2004,78(15):7904-7915
Despite recent successes in generating subgenomic RNA replicons derived from genotype 1b strains of hepatitis C virus (HCV) that replicate efficiently in cultured cells, it has proven difficult to generate efficiently replicating RNAs from any other genotype of HCV. This includes genotype 1a, even though it is closely related to genotype 1b. We show here that an important restriction to replication of the genotype 1a H77c strain RNA in normal Huh7 cells resides within the amino-terminal 75 residues of the NS3 protease. We identified adaptive mutations located within this NS3 domain and within NS4A, in close proximity to the essential protease cofactor sequence, that act cooperative to substantially enhance the replication of this genotype 1a RNA in Huh7 cells. These and additional adaptive mutations, identified through a series of iterative transfections and the selection of G418-resistant cell clones, form two groups associating with distinct nonstructural protein domains: the NS3/4A protease and NS5A. A combination of mutations from both groups led to robust replication of otherwise unmodified H77c genomic RNA that was readily detectable by northern analysis within 4 days of transfection into Huh7 cells. We speculate that these adaptive mutations favorably influence assembly of the replicase complex with host cell-specific proteins, or alternatively promote interactions of NS3/4A and/or NS5A with cellular proteins involved in host cell antiviral defenses.  相似文献   

4.
5.
6.
7.
8.
High rates of genetic variation ensure the survival of RNA viruses. Although this variation is thought to result from error-prone replication, RNA viruses must also maintain highly conserved genomic segments. A balance between conserved and variable viral elements is especially important in order for viruses to avoid "error catastrophe." Ribavirin has been shown to induce error catastrophe in other RNA viruses. We therefore used a novel hepatitis C virus (HCV) replication system to determine relative mutation frequencies in variable and conserved regions of the HCV genome, and we further evaluated these frequencies in response to ribavirin. We sequenced the 5' untranslated region (5' UTR) and the core, E2 HVR-1, NS5A, and NS5B regions of replicating HCV RNA isolated from cells transfected with a T7 polymerase-driven full-length HCV cDNA plasmid containing a cis-acting hepatitis delta virus ribozyme to control 3' cleavage. We found quasispecies in the E2 HVR-1 and NS5B regions of untreated replicating viral RNAs but not in conserved 5' UTR, core, or NS5A regions, demonstrating that important cis elements regulate mutation rates within specific viral segments. Neither T7-driven replication nor sequencing artifacts produced these nucleotide substitutions in control experiments. Ribavirin broadly increased error generation, especially in otherwise invariant regions, indicating that it acts as an HCV RNA mutagen in vivo. Similar results were obtained in hepatocyte-derived cell lines. These results demonstrate the potential utility of our system for the study of intrinsic factors regulating genetic variation in HCV. Our results further suggest that ribavirin acts clinically by promoting nonviable HCV RNA mutation rates. Finally, the latter result suggests that our replication model may be useful for identifying agents capable of driving replicating virus into error catastrophe.  相似文献   

9.
Progress toward development of better therapies for the treatment of hepatitis C virus (HCV) infection has been hampered by poor understanding of HCV biology and the lack of biological assays suitable for drug screening. Here we describe a powerful HCV replication system that employs HCV replicons expressing the beta-lactamase reporter (bla replicons) and subpopulations of Huh7 cells that are more permissive (or "enhanced") to HCV replication than na?ve Huh7 cells. Enhanced cells represent a small fraction of permissive cells present among na?ve Huh7 cells that is enriched during selection with replicons expressing the neomycin phosphotransferase gene (neo replicons). The level of permissiveness of cell lines harboring neo replicons can vary greatly, and the enhanced phenotype is usually revealed upon removal of the neo replicon with inhibitors of HCV replication. Replicon removal is responsible for increased permissiveness, since this effect could be reproduced either with alpha interferon or with an HCV NS5B inhibitor. Moreover, adaptive mutations present in the replicon genome used during selection do not influence the permissiveness of the resulting enhanced-cell population, suggesting that the mechanisms governing the permissiveness of enhanced cells are independent from viral adaptation. Because the beta-lactamase reporter allows simultaneous quantitation of replicon-harboring cells and reporter activity, it was possible to investigate the relationship between genome replication activity and the frequency with which transfected genomes can establish persistent replication. Our study demonstrates that differences in the replication potential of the viral genome are manifested primarily in the frequency with which persistent replication is established but modestly affect the number of replicons observed per replicon-harboring cell. Replicon copy number was found to vary over a narrow range that may be defined by a minimal number required for persistent maintenance and a maximum that is limited by the availability of essential host factors.  相似文献   

10.
Hepatitis delta virus (HDV) infection of human hepatocytes infected with the hepatitis B virus (HBV) is associated with increased liver damage and risk of fulminant disease. Although considerable progress has been made towards the elucidation of the mechanisms of HDV replication and pathogenesis, little is still known about the host factors involved in the different steps of the replication cycle. Here, we made use of a proteomic approach to analyse the global alterations in protein expression that arise in human hepatocytes separately transfected with each of the HDV components. Huh7 cells were transiently transfected with plasmids that code for the small delta antigen (S-HDAg), large delta antigen (L-HDAg), genomic RNA (gRNA), and antigenomic RNA (agRNA), respectively. Total protein extracts were separated by 2-DE and differentially expressed spots were identified by MALDI-TOF followed by database searching. We identified 32 proteins known to be involved in different pathways namely nucleic acid metabolism, protein metabolism, transport, signal transduction, apoptosis, and cell growth. Moreover, the down regulation of hnRNP D, HSP105, and triosephosphate isomerase was further confirmed by Real time PCR.  相似文献   

11.
12.
13.
The JFH-1 strain of hepatitis C virus (HCV) is a genotype 2a strain that can replicate autonomously in Huh7 cells. The J6 strain is also a genotype 2a strain, but its full genomic RNA does not replicate in Huh7 cells. However, chimeric J6/JFH-1 RNA that has J6 structural-protein-coding regions and JFH-1 nonstructural-protein-coding regions can replicate autonomously and produce infectious HCV particles. In order to determine the mechanisms underlying JFH-1 RNA replication, we constructed various J6/JFH-1 chimeras and tested their RNA replication and virus particle production abilities in Huh7 cells. Via subgenomic-RNA-replication assays, we found that both the JFH-1 NS5B-to-3'X (N5BX) and the NS3 helicase (N3H) regions are important for the replication of the J6CF replicon. We applied these results to full-length genomic RNA replication and analyzed replication using Northern blotting. We found that a chimeric J6 clone with JFH-1 N3H and N5BX could replicate autonomously but that a chimeric J6 clone with only JFH-1 N5BX had no replication ability. Finally, we tested the virus production abilities of these clones and found that a chimeric J6 clone with JFH-1 N3H and N5BX could produce infectious HCV particles. In conclusion, the JFH-1 NS3 helicase and NS5B-to-3'X regions are important for efficient replication and virus particle formation of HCV genotype 2a strains.  相似文献   

14.
Formation of a membrane-associated replication complex, composed of viral proteins, replicating RNA, and altered cellular membranes, is a characteristic feature of plus-strand RNA viruses. Here, we demonstrate the presence of a specific membrane alteration, designated the membranous web, that contains hepatitis C virus (HCV) nonstructural proteins, as well as viral plus-strand RNA, in Huh-7 cells harboring autonomously replicating subgenomic HCV RNAs. Metabolic labeling with 5-bromouridine 5'-triphosphate in the presence of actinomycin D revealed that the membranous web is the site of viral RNA synthesis and therefore represents the replication complex of HCV.  相似文献   

15.
16.
17.
Cao D  Huang YW  Meng XJ 《Journal of virology》2010,84(24):13040-13044
The roles of conserved nucleotides on the stem-loop (SL) structure in the intergenic region of the hepatitis E virus (HEV) genome in virus replication were determined by using Huh7 cells transfected with HEV SL mutant replicons containing reporter genes. One or two nucleotide mutations of the AGA motif on the loop significantly reduced HEV replication, and three or more nucleotide mutations on the loop abolished HEV replication. Mutations on the stem and of the subgenome start sequence also significantly inhibited HEV replication. The results indicated that both the sequence and the SL structure in the junction region play important roles in HEV replication.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号