首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Expression of p60v-src of Rous sarcoma virus in cultured chicken embryo neuroretinal cells was previously shown to result in the transformation and sustained proliferation of normally quiescent cell populations. We show here that Rous sarcoma virus variants that encode p60c-src, the cellular homolog of p60v-src, lack the ability to induce morphological transformation and cell proliferation of cultured neuroretinal cells. Neuroretinal cells infected with c-src-containing viruses, however, possess no less p60 protein kinase activity assayed in the immune complex than those infected with the transformation-defective Rous sarcoma virus mutants PA101 or PA104, which do stimulate the growth of these cells.  相似文献   

2.
The transforming protein of Rous sarcoma virus, pp60v-src, is known to be a tyrosine protein kinase, but the mechanism of cell transformation remains unclear. In further investigating pp60v-src structure and function, we have analyzed two temperature-sensitive (ts) Rous sarcoma virus src gene mutants, tsLA29 and tsLA32. The mutations in tsLA29 and tsLA32 map in the carboxy-terminal region and the amino-terminal half of pp60v-src, respectively, and encode mutant proteins with either temperature-labile (tsLA29) or -stable (tsLA32) kinase activities. Here we examined the intracellular processing and localization of these pp60v-src mutants and extended our characterization of transformation parameters expressed by cells infected by the Rous sarcoma virus variants. No obvious defects in functional integrity of the tsLA32 pp60v-src could yet be demonstrated, whereas the tsLA29 pp60v-src was perturbed not only in kinase activity, but also in aspects of protein processing and localization. Analysis of transformation parameters expressed by infected cells demonstrated the complete temperature lability of both mutants.  相似文献   

3.
The protein substrates for the tyrosine protein kinases in cells transformed by avian sarcoma viruses were analyzed by gel electrophoresis in combination with immunoblotting or immunoprecipitation by antibodies against phosphotyrosine. We found that greater than 90% of phosphotyrosine-containing cellular proteins can be immunoprecipitated by these antibodies. The level of phosphotyrosine-containing cellular proteins detectable by this method markedly increased upon transformation with Rous sarcoma virus, and more than 20 distinct bands of such proteins were found in lysates of Rous sarcoma virus-transformed cells. Most of these phosphotyrosine-containing proteins had not been identified by other methods, and their presence appeared to correlate with morphological transformation in cells infected with various Rous sarcoma virus mutants and Y73, PRCII, and Fujinami sarcoma viruses. However, considerably different patterns were obtained with cells infected with nontransforming Rous sarcoma virus mutants that encode nonmyristylated src kinases, indicating that most substrates that correlate with transformation can only be recognized by p60v-src associated with the plasma membrane.  相似文献   

4.
Expression of the v-src gene of Rous sarcoma virus in avian embryo neuroretina cells results in transformation and sustained proliferation of these normally resting cells. Transformed neuroretina cells are also tumorigenic upon inoculation into immunodeficient hosts. We have previously described conditional mutants of Rous sarcoma virus encoding p60v-src proteins which induce proliferation of neuroretina cells in the absence of transformation and tumorigenicity. These results suggest that p60v-src is composed of functionally distinct domains which may interact with multiple cellular targets. In this study, we describe a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion of 278 base pairs in the 5' portion of the v-src gene but which has retained the ability to induce proliferation of quail neuroretina cells. The deleted v-src gene encodes a 45,000-molecular-weight phosphoprotein which contains both phosphoserine and phosphotyrosine, is myristylated, and possesses tyrosine kinase activity indistinguishable from that of wild-type p60v-src. Molecular cloning and sequence analysis of the mutant v-src gene have shown that this deletion extends from amino acid 33 to 126 of the wild-type p60v-src. Therefore, this portion of the v-src protein is dispensable for the mitogenic activity of Rous sarcoma virus in neuroretina cells.  相似文献   

5.
We provide direct evidence that serine 17 is the major site of serine phosphorylation in p60v-src, the transforming protein of Rous sarcoma virus, and in its cellular homolog, p60c-src. The amino acid composition of the tryptic peptide containing the major site of serine phosphorylation in p60v-src was deduced by peptide map analysis of the protein labeled biosynthetically with a variety of radioactive amino acids. Manual Edman degradation revealed that the phosphorylated serine in this peptide was the amino terminal residue. These data are consistent only with the phosphorylation of serine 17. The major site of serine phosphorylation in chicken p60c-src, the cellular homolog of p60v-src, is contained in a tryptic peptide identical to that containing serine 17 in p60v-src of Schmidt Ruppin Rous sarcoma virus of subgroup A. Serine 17 is therefore also phosphorylated in p60c-src. The p60v-src protein encoded by Prague Rous sarcoma virus was found to contain two sites of tyrosine phosphorylation. The previously unrecognized site of tyrosine phosphorylation may be tyrosine 205 or possibly tyrosine 208. Treatment of Prague Rous sarcoma virus-infected cells with vanadyl ions stimulated the protein kinase activity of p60v-src and increased the phosphorylation of tyrosine 416 but not the phosphorylation of the additional site of tyrosine phosphorylation.  相似文献   

6.
Transformation by Rous sarcoma virus results in a dramatic increase in the rate at which the transformed cells transport glucose across the cell membrane. The increased transport rate is a consequence of an increased number of transporters in the transformed cells. Utilizing antibody raised against the purified human erythrocyte glucose transporter, we have identified the glucose transporter as a membrane glycoprotein with a monomer Mr of approximately 41,000. The increased rate of glucose transport is dependent on the activity of pp60src, the transforming protein of Rous sarcoma virus. This protein has been shown to be a protein kinase that phosphorylates on tyrosine residues. We have examined the tyrosine phosphorylation of a major cellular protein of Mr 36,000 in cells infected with a panel of partially transforming mutants of Rous sarcoma virus. One of these mutants (CU2) increases the rate of glucose transport only slightly and does not render the infected cells fully anchorage independent or tumorigenic (although other transformation parameters are fully induced). Cells infected with this mutant display a 36,000-dalton protein that is phosphorylated to a considerably lesser extent than cells infected with wild-type virus. Analyses of this sort may help to identify the cellular targets of pp60src whose phosphorylation is necessary for the increased glucose transport rate.  相似文献   

7.
dlPA105 is a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion in the N-terminal portion of the v-src gene coding sequence. This virus was isolated on the basis of its ability to induce proliferation of quiescent quail neuroretina cells. The altered v-src gene encodes a phosphoprotein of 45,000 daltons which possesses tyrosine kinase activity. DNA sequencing of the mutant v-src gene has shown that deletion extends from amino acid 33 to 126 of wild-type p60v-src. We investigated the tumorigenic and transforming properties of this mutant virus. dlPA105 induced fibrosarcomas in quails with an incidence identical to that induced by wild-type virus. Quail neuroretina cells infected with the mutant virus were morphologically transformed and formed colonies in soft agar. In contrast, dlPA105 induced only limited morphological alterations in quail fibroblasts and was defective in promoting anchorage-independent growth of these cells. Synthesis and tyrosine kinase activity of the mutant p45v-src were similar in both cell types. These data indicate that the portion of the v-src protein deleted in p45v-src is dispensable for the mitogenic and tumorigenic properties of wild-type p60v-src, whereas it is required for in vitro transformation of fibroblasts. The ability of dlPA105 to induce different transformation phenotypes in quail fibroblasts and quail neuroretina cells is a property unique to this Rous sarcoma virus mutant and provides evidence for the existence of cell-type-specific response to v-src proteins.  相似文献   

8.
Ornithine decarboxylase (ODC), the key enzyme of polyamine biosynthesis, becomes upregulated during cell proliferation and transformation. Here we show that intact ODC activity is needed for the acquisition of a transformed phenotype in rat 2R cells infected with a temperature-sensitive mutant of Rous sarcoma virus. Addition of the ODC inhibitor alpha-difluoromethyl ornithine (DFMO) to the cells (in polyamine-free medium) before shift to permissive temperature prevented the depolymerization of filamentous actin and morphological transformation. Polyamine supplementation restored the transforming potential of pp60v-src. DFMO did not interfere with the expression of pp60v-src or its in vitro tyrosine kinase activity. The tyrosine phosphorylation of most cellular proteins, including ras GAP, did not either display clear temperature- or DFMO-sensitive changes. A marked increase was, however, observed in the tyrosine phosphorylation of phosphatidylinositol 3-kinase and proteins of 33 and 36 kD upon the temperature shift, and these hyperphosphorylations were partially inhibited by DFMO. A DFMO-sensitive increase was also found in the total phosphorylation of calpactins I and II. The well-documented association of GAP with the phosphotyrosine-containing proteins p190 and p62 did not correlate with transformation, but a novel 42-kD tyrosine phosphorylated protein was complexed with GAP in a polyamine- and transformation-dependent manner. Further, tyrosine phosphorylated proteins of 130, 80/85, and 36 kD were found to coimmunoprecipitate with pp60v-src in a transformation-related manner. Altogether, this model offers a tool for sorting out the protein phosphorylations and associations critical for the transformed phenotype triggered by pp60v- src, and implicates a pivotal role for polyamines in cell transformation.  相似文献   

9.
The expression of p60v-src in chicken cells infected with Rous sarcoma virus causes stimulation of cell proliferation, morphological alteration, and anchorage independence. PA101 and PA104 are temperature-sensitive variants encoding mutant p60v-src proteins that are partially defective in the induction of these transformation parameters. To define the structural basis for the transformation defectiveness of the p60v-src mutants, the v-src genes of PA101 and PA104 were molecularly cloned and analyzed. Amino- and carboxy-terminal coding regions of the cloned mutant genes were exchanged with the corresponding regions of cloned wild-type v-src and chicken c-src genes, reconstructed into viral DNA, and expressed in infected cells maintained at various temperatures. This analysis revealed that lesions within the tyrosine kinase domains of the two mutant proteins confer temperature sensitivity on all three transformation functions of p60v-src. An amino-terminal region of the PA101 mutant protein, which coincides with the proposed modulatory domain and appears to interact with the kinase domain, affects morphological alteration in a temperature-independent manner. Our results suggest that the function of the kinase domain is essential to all three parameters examined, whereas the amino-terminal domain is important in determining cell morphology.  相似文献   

10.
Immunoprecipitates of p60v-src proteins from chicken embryo fibroblasts infected with Rous sarcoma virus were assayed for phosphatidylinositol (PI) kinase activity in the absence of detergents. The product of the PI kinase reaction, phosphatidylinositol monophosphate (PIP), migrated slightly slower than did the authentic phosphatidylinositol-4-monophosphate marker in thin-layer chromatography and was indistinguishable from phosphatidylinositol-3-monophosphate produced by PI kinase type I. Furthermore, the deacylated product comigrated with glycerophosphoinositol-3-phosphate in high-performance liquid chromatography. Both sucrose gradient fractionation and the heat stability of PI kinase activity from cells infected with temperature-sensitive mutants suggest that the PI kinase activity is not intrinsic to p60v-src but is a property of another molecule complexed with p60v-src. All transforming variants of p60src were associated with PI kinase activity, whereas this enzyme activity was hardly detectable in immunoprecipitates from cells infected with nontransforming viruses encoding p60c-src or an enzymatically inactive variant. However, PI kinase activity was found in p60src immunoprecipitates from cells infected with nonmyristylated, nontransforming mutants as well as temperature-sensitive mutants at the nonpermissive temperature, which indicated that simple association of PI kinase activity with p60src is not sufficient for cell transformation.  相似文献   

11.
We have previously found that Rous sarcoma virus variants in which the viral src (v-src) gene is replaced by the cellular src (c-src) gene have no transforming activity. In this study, we analyzed the basis for the inability of the p60c-src overproduced by these variants to transform cells. Phosphorylations of tyrosine residues in total cell protein or in cellular 34K protein are known to be markedly enhanced upon infection with wild-type Rous sarcoma virus. We found that these tyrosine phosphorylations were only slightly increased in the c-src-containing virus-infected cells, whereas both levels were significantly increased by infection with wild-type Rous sarcoma virus, or transforming mutant viruses which are derived from c-src-containing viruses by spontaneous mutation. Phosphorylation at tyrosine 416 of p60 itself was also extremely low in overproduced p60c-src and high in p60s of transforming mutant viruses. In immunoprecipitates with monoclonal antibody, the overproduced p60c-src had much lower casein tyrosine kinase activity than did p60v-src. We previously showed that p60 myristylation and plasma membrane localization may be required for cell transformation. p60c-src was similar to transforming p60s in these properties. These results strongly suggest that the low level of tyrosine phosphorylation by overproduced p60c-src accounts for its inability to transform cells.  相似文献   

12.
The transforming protein of Rous sarcoma virus, p60src, has associated with it a protein kinase activity. We examined whether a correlation exists between the cellular concentration of enzymatically active p60src and the degree to which chick cells are transformed by mutants of Rous sarcoma virus which are temperature-sensitive for transformation. Such a correlation does exist, but cells infected with some mutants could be shown to contain, at the nonpermissive temperature, an amount of protein kinase activity equal to 30 to 40% of that in a wild-type transformed cell. We quantified the amount of virus-induced protein kinase activity by precipitation of p60src with an excess of antitumor antiserum. Our initial measurements of activity were serious underestimates, due to the lability of the protein kinase activity associated with p60src of at least four temperature-sensitive mutants. In fact, no activity at all was associated with p60src of tsLA90 when immunoprecipitation was performed by standard means. However, when immunoprecipitation was performed with procedures which minimize inactivation, it became apparent both that cells transformed by tsLA90 contained protein kinase activity and that cells infected with either NY68 or BK5 contained at the nonpermissive temperature, one-third to one-half as much activity as wild-type transformed cells. This level of activity was much more than that arising from p60sarc in uninfected cells. In uninfected cells we found an amount of protein kinase activity which varied from 3 to 5% as much as that in a virally transformed cell. The lability of the protein kinase activity of each of these mutants is a further demonstration that this activity is essential for the transformation of cells by Rous sarcoma virus. So as to explain the high protein kinase levels in cells infected with NY68 and BK5 at the nonpermissive temperature, the idea that transformation may be a response to a small quantitative change in the total activity of p60src and the possibility that there may be more than one viral function which is essential for transformation are discussed.  相似文献   

13.
Many oncogene products have been shown to bear strong homology to or to interact with components of normal cellular signal transduction. We have previously shown that a glycoprotein band of 95 kilodaltons (kDa) becomes tyrosine phosphorylated in chick cells transformed by Rous sarcoma virus and that tyrosine phosphorylation of this protein band correlates tightly with phenotypic transformation in cells infected with a large and diverse panel of src mutants (L. M. Kozma, A. B. Reynolds, and M. J. Weber, Mol. Cell. Biol. 10:837-841, 1990). In this communication, we report that a component of the 95-kDa glycoprotein band is related or identical to the 95-kDa beta subunit of the receptor for insulinlike growth factor I (IGF-I). We found that the beta subunit of the IGF-I receptor comigrated on polyacrylamide gels with a component of the 95-kDa glycoprotein region from src-transformed cells under both reducing and nonreducing gel conditions and had a very similar partial phosphopeptide map. To further test the hypothesis that the beta subunit of the IGF-I receptor becomes tyrosine phosphorylated in cells transformed by pp60src, a human cell line that expressed the IGF-I receptor was transformed by src. Comparison of IGF-I receptors immunoprecipitated from normal and transformed cells revealed that the beta subunit of the IGF-I receptor became constitutively tyrosine phosphorylated in src-transformed cells. Moreover, IGF-I receptor phosphorylation induced by src was synergistic with that induced by the hormone: IGF-I-stimulated autophosphorylation of the receptor was much greater in src-transformed cells than in untransformed HOS cells even at maximal concentrations of IGF-I. This increased responsiveness to IGF-I was not due to increases in receptor number, time course of phosphorylation, or affinity for hormone. Finally, no IGF-I-like activity could be detected in culture supernatants collected from the src-transformed cells, suggesting that the increased receptor phosphorylation observed in the src-transformed cells may be mediated by an intracellular mechanism rather than an external autocrine stimulation. Our data demonstrate that the IGF-I receptor becomes constitutively tyrosine phosphorylated in src-transformed cells. This finding raises the possibility that pp60v-src alters growth regulation at least in part by phosphorylating and activating this growth factor receptor.  相似文献   

14.
The middle T antigen of polyomavirus transformed primary chicken embryo fibroblasts when expressed from a replication-competent avian retrovirus. This in vitro-constructed retrovirus, SRMT1, is a variant of Rous sarcoma virus that encodes the middle T antigen in place of v-src. Inoculation of SRMT1 into 1-week-old chickens rapidly induced hemangiomas and hemangiosarcomas. As shown with mammalian cells infected with polyomavirus, polyomavirus middle T antigen appears to be associated with p60c-src in chicken cells infected with SRMT1. When lysates of SRMT1-infected cells immunoprecipitated with either a monoclonal antibody against p60src or anti-T serum were assayed in an in vitro kinase reaction, the middle T antigen was heavily phosphorylated. To see whether an excess of p60c-src could alter the extent of phosphorylation of the middle T protein or the process of cell transformation by middle T, cells were doubly infected with SRMT1 and NY501, a virus which overexpresses p60c-src. Doubly infected chicken embryo fibroblasts transformed with the same kinetics and were morphologically indistinguishable from chicken embryo fibroblasts infected with SRMT1 alone. Phosphorylation of the middle T antigen was elevated two- to fivefold relative to cells infected only with SRMT1.  相似文献   

15.
Tyrosine-specific phosphorylation of cellular proteins has been implicated in the neoplastic transformation of cells by Rous sarcoma virus (RSV). One of the putative substrates for the src gene product (pp60v-src) of RSV is the cytoskeletal protein vinculin, giving rise to the hypothesis that tyrosine-specific phosphorylation of vinculin disrupts adhesion plaque integrity, leading to the characteristic rounded morphology of RSV-transformed cells. We have investigated this hypothesis by analysing the properties of fibroblasts transformed by conditional and non-conditional mutants of RSV which confer different morphologies on infected cells, with respect to formation of microfilament bundles, formation of vinculin-containing adhesion plaques, the deposition of a fibronectin-containing extracellular matrix, the localization of pp60v-src and the tyrosine-specific phosphorylation of vinculin. Cells transformed by the temperature-sensitive (ts) RSV mutant LA32 cultured at 41 degrees C were morphologically normal, and contained prominent microfilament bundles and well-developed adhesion plaques. However, these cells had a fully active pp60v-src kinase, had pp60v-src concentrated in their adhesion plaques and contained vinculin which was heavily phosphorylated on tyrosine residues. Cells transformed by a recovered avian sarcoma virus, rASV 2234.3 exhibited a markedly fusiform morphology with pp60v-src concentrated in well-developed adhesion plaques and an elevation of the phosphotyrosine content of vinculin. Cells transformed by LA32 at restrictive temperature comprise morphologically normal cells, indistinguishable from untransformed CEF, yet which contain tyrosine-phosphorylated vinculin and suggest that neither tyrosine-specific phosphorylation of vinculin nor pp60v-src concentration in adhesion plaques is sufficient for the rounded morphology of RSV-transformed cells.  相似文献   

16.
N-Myristoyl glycinal diethylacetal strongly inhibited morphological transformation of chick embryo fibroblasts infected with a temperature-sensitive mutant (tsNY68) of Rous sarcoma virus. Myristoylated or nonmyristoylated pp60v-src, which were expressed in tsNY68-infected cells in the absence or presence of the compound, were identified separately by fluorography or immunoblotting analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the [3H]myristate-labeled cell lysate. The results taken together suggest that the blockage of morphological transformation was caused by prevention of protein myristoylation of the transforming protein pp60v-src.  相似文献   

17.
Previous studies have shown that carboxyl-terminal mutation of pp60c-src can activate its transforming ability. Conflicting results have been reported for the transforming ability of pp60c-src mutants having only mutations outside its carboxyl-terminal region. To clarify the effects of such mutations, we tested the activities of chimeric v(amino)- and c(carboxyl)-src (v/c-src) proteins at different dosages in NIH 3T3 cells. The focus-forming activity of Rous sarcoma virus long terminal repeat (LTR)-src expression plasmids was significantly reduced when the v-src 3' coding region was replaced with the corresponding c-src region. This difference was masked when the Rous sarcoma virus LTR was replaced with the Moloney murine leukemia virus LTR, which induced approximately 20-fold more protein expression, but even focus-selected lines expressing v/c-src proteins were unable to form large colonies in soft agarose or tumors in NFS mice. This suggests that pp60c-src is not equally sensitive to mutations in its different domains and that there are at least two distinguishable levels of regulation, the dominant one being associated with its carboxyl terminus. v/c-src chimeric proteins expressed with either LTR had high in vitro specific kinase activity equal to that of pp60v-src but, in contrast, were phosphorylated at both Tyr-527 and Tyr-416. Total cell protein phosphotyrosine was enhanced in cells incompletely transformed by v/c-src proteins to the same extent as in v-src-transformed cells, suggesting that the carboxyl-terminal region may affect substrate specificity in a manner that is important for transformation.  相似文献   

18.
Previous studies showed that the amino-terminal domain of Rous sarcoma virus p60v-src involved in myristylation and membrane association of the protein is required for morphological transformation and anchorage independence. Analysis of src delection mutants revealed that the amino-terminal one-third of p60v-src, including the membrane-binding domain, is not essential for induction of cell proliferation. These results demonstrated that, in contrast to the cellular target(s) involved in morphological transformation and anchorage independence, the target(s) involved in mitogenic activity is accessible to nonmyristylated src proteins.  相似文献   

19.
The cytoskeletal protein talin was found to undergo enhanced phosphorylation at tyrosine residues in chicken embryo fibroblasts following transformation by Rous sarcoma virus. An increase in the tyrosine phosphorylation of talin was also observed within 6 h in cells infected by the temperature-sensitive mutant tsNY68 after a shift from the nonpermissive to the permissive temperature. The overall extent of phosphorylation was 0.07 mol of phosphate per mol of talin and was not appreciably altered by transformation. In uninfected cells talin was shown to be phosphorylated at multiple sites by tryptic peptide mapping. Following transformation most of these sites remained phosphorylated, to the same or to a lesser extent, while novel, phosphotyrosine-containing phosphopeptides appeared. Talin was phosphorylated at tyrosine in cells infected by Rous sarcoma virus mutants which induce altered or partial transformation morphologies; thus the increased phosphorylation of talin at tyrosine occurred irrespective of the morphology induced. Transformation by Y73 also induced elevated levels of phosphotyrosine in talin, whereas transformation by the avian erythroblastosis and Fujinami sarcoma viruses did not.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号