首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We had shown previously that all major glycoproteins of pigeon egg white contain Galalpha1-4Gal epitopes (Suzuki, N., Khoo, K. H., Chen, H. C., Johnson, J. R., and Lee, Y. C. (2001) J. Biol. Chem. 276, 23221-23229). We now report that Galalpha1-4Gal-bearing glycoproteins are also present in pigeon serum, lymphocytes, and liver, as probed by Western blot with Griffonia simplicifolia-I lectin (specific for terminal alpha-Gal) and anti-P1 (specific for Galalpha1-4Galbeta1-4GlcNAcbeta1-) monoclonal antibody. One of the major glycoproteins from pigeon plasma was identified as IgG (also known as IgY), which has Galalpha1-4Gal in its heavy chains. High pressure liquid chromatography, mass spectrometric (MS), and MS/MS analyses revealed that N-glycans of pigeon serum IgG included (i) high mannose-type (33.3%), (ii) disialylated biantennary complex-type (19.2%), and (iii) alpha-galactosylated complex-type N-glycans (47.5%). Bi- and tri-antennary oligosaccharides with bisecting GlcNAc and alpha1-6 Fuc on the Asn-linked GlcNAc were abundant among N-glycans possessing terminal Galalpha1-4Gal sequences. Moreover, MS/MS analysis identified Galalpha1-4Galbeta1-4Galbeta1-4GlcNAc branch terminals, which are not found in pigeon egg white glycoproteins. An additional interesting aspect is that about two-thirds of high mannose-type N-glycans from pigeon IgG were monoglucosylated. Comparison of the N-glycan structures with chicken and quail IgG indicated that the presence of high mannose-type oligosaccharides may be a characteristic of these avian IgG.  相似文献   

2.
Pseudomonas aeruginosa produces a galactophilic lectin, PA-IL, that resembles P-fimbrial adhesins of uropathogenic Escherichia coli strains in binding to human P blood group antigens. We examined, in the present study, its interaction with pigeon egg white glycoproteins carrying N-glycans with terminal Galalpha1-4Gal which inhibit the adhesion of P-fimbriae. For comparison, the lectin concanavalin A (Con A) and additional avian egg whites (of hen and quail) were also examined. The results obtained in both hemagglutination inhibition and Western blot analyses showed that PA-IL, unlike Con A, preferentially reacted with the pigeon egg white glycoproteins. These results, which confirmed PA-IL similarity in sugar specificity to E. coli P-fimbriae, demonstrated the advantage of this purified lectin for representing P-type and additional galactophilic microbial adhesins unavailable in purified stable form, in Western blot analyses.  相似文献   

3.
Alterations of the oligosaccharide structures of glycoproteins are associated with differentiation, malignant transformation, and expression of the same protein in different cell types. The potential biological importance of oligosaccharides has resulted in a growing need for detailed structural information. When glycoproteins are available in limited quantities and/or bear highly heterogeneous oligosaccharides, characterization of their oligosaccharides is difficult. We have developed an efficient approach for obtaining detailed information about oligosaccharides by determining structural 'fingerprints' using lectin affinity high-performance liquid chromatography.  相似文献   

4.
The lectin jacalin immobilized on agarose was found to bind a variety of glycoproteins known to contain typical O-linked oligosaccharides, including human IgA, C1 inhibitor, chorionic gonadotropin, plasminogen, bovine protein Z, bovine coagulation factor X, and fetuin. These proteins were eluted from columns of jacalin-agarose specifically by alpha-galactopyranosides such as melibiose and alpha-methylgalactopyranoside but not by lactose or other sugars. Treatment of asialofetuin with endo--alpha--N--acetylgalactosaminidase eliminated its affinity for the lectin column, and other proteins known to contain only N-linked oligosaccharides such as ovalbumin, transferrin, and alpha 1-acid glycoprotein were not retained by the lectin. Binding of proteins with O-linked oligosaccharides to the lectin column did not require divalent cations and was affected little by changes in pH and ionic strength over a wide range. Virtually all of the glycosidically linked oligosaccharides of fetuin, chorionic gonadotropin, and plasminogen are known to be sialated. Thus, binding of these glycoproteins to jacalin, which is known to have affinity for the core disaccharide, 1-beta-galactopyranosyl-3-(alpha-2-acetamido-2-deoxygalactopyranoside ), in O-linked oligosaccharides of these proteins, was not prevented by the presence of sialic acids. Affinity of oligosaccharides for jacalin did appear to be reduced by occurrence of sialic acids as it was found that higher concentrations of melibiose were required to elute asialofetuin than fetuin from jacalin-agarose. Results of the present study indicate that affinity chromatography using this lectin is a widely applicable technique for identifying and purifying proteins bearing O-linked oligosaccharides.  相似文献   

5.
Ovotransferrin (POT), two ovalbumins (POA(hi) and POA(lo)), and ovomucoid (POM) were isolated from pigeon egg white (PEW). Unlike their chicken egg white counterparts, PEW glycoproteins contain terminal Galalpha1-4Gal, as evidenced by GS-I lectin (specific for terminal alpha-Gal), anti-P(1) (Galalpha1-4Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta1-1Cer) monoclonal antibody, and P fimbriae on uropathogenic Escherichia coli (specific for Galalpha1-4Gal). Galalpha1-4Gal on PEW glycoproteins were found in N-glycans releasable by treatment with glycoamidase F. The respective contents of N-glycans in each glycoprotein were 3.5%, POT; 17%, POA(hi); and 31-37%, POM. POA(hi) has four N-glycosylation sites, in contrast to chicken ovalbumin, which has only one. High performance liquid chromatography analysis showed that N-glycans on POA(hi) were highly heterogeneous. Mass spectrometric analysis revealed that the major N-glycans were monosialylated tri-, tetra-, and penta-antennary oligosaccharides containing terminal Galalpha1-4Gal with or without bisecting N-acetylglucosamine. Oligosaccharide chains terminating in Galalpha1-4Gal are rare among N-glycans from the mammals and avians that have been studied, and our finding is the first predominant presence of (Galalpha1-4Gal)-terminated N-glycans.  相似文献   

6.
Recent studies indicate that some mammalian S-type lectins bind preferentially to oligosaccharides containing the repeating disaccharide [3Gal beta 1,4GlcNAc beta 1]n or poly-N-acetyllactosamine (PL) sequence. We report here our investigation on the distribution of these sequences in glycoproteins in Chinese hamster ovary (CHO) cells and the interaction of glycoproteins containing PL chains with an immobilized S-type lectin (L14) from calf heart tissue. Our results demonstrate that PL chains are carried by a few high molecular weight glycoproteins which are bound by tomato-lectin Sepharose and one of these was precipitated by antibody to LAMP-1 (a lysosomal-associated membrane glycoprotein). More importantly, these high molecular weight glycoproteins, including LAMP-1, were bound with high affinity by L14. These results indicate that mammalian S-type lectins are highly specific in their interactions with glycoproteins and that LAMPs carry important recognition sequences for these lectins.  相似文献   

7.
Rice seeds contain a 2-acetamido-2-deoxy- -glucose-specific lectin. It has an Mr of 36 000 and is composed of two identical, non-covalently bound subunits of Mr 18 000. Each subunit consists of two disulfide-linked polypeptide chains of Mrs 10 000 and 8000. The lectin activity is highly stable to several chemical denaturants and heat treatment. The lectin interacts with glycoproteins, which have either clustered O-linked oligosaccharides or N-linked oligosaccharides. The N-linked glycoproteins include high -mannose, hybrid and complex biantennary structures.  相似文献   

8.
Calreticulin (CRT) is thought to be a molecular chaperone that interacts with glycoproteins exclusively through a lectin site specific for monoglucosylated oligosaccharides. However, this chaperone function has never been directly demonstrated nor is it clear how lectin-oligosaccharide interactions facilitate glycoprotein folding. Using purified components, we show that CRT suppresses the aggregation not only of a glycoprotein bearing monoglucosylated oligosaccharides but also that of non-glycosylated proteins. Furthermore, CRT forms stable complexes with unfolded, non-glycosylated substrates but does not associate with native proteins. ATP and Zn(2+) enhance CRT's ability to suppress aggregation of non- glycoproteins, whereas engagement of its lectin site with purified oligosaccharide attenuates this function. CRT also confers protection against thermal inactivation and maintains substrates in a folding-competent state. We conclude that in addition to being a lectin CRT possesses a polypeptide binding capacity capable of discriminating between protein conformational states and that it functions in vitro as a classical molecular chaperone.  相似文献   

9.
The protein-DNA crosslinking capability of cis-dichloro diammineplatinum has been exploited to check the intranuclear location of N-glycosylated proteins. When intact liver cells were treated with this reagent, a number of glycoproteins, recognized by Concanavalin A, have been shown to become crosslinked to DNA; many of them have been recognized as nuclear matrix components. The recognition by this lectin was abolished by treatment with N-glycosidase F, showing the presence of N-glycosidic bonds between the sugar moiety and the protein. Most of the glycoproteins appeared to have high mannose oligosaccharide chains, but sialic acid containing oligosaccharides were also identified.  相似文献   

10.
Lectins are proteins that specifically bind to a particular carbohydrate structure. Affinity chromatography with immobilized lectins is a quite effective technique not only for the fractionation of glycoproteins or oligosaccharides but also their structural assessment. In this article, we focus on the separation of glycopeptides and oligosaccharides derived from glycoproteins by affinity chromatography on immobilized lectin columns.  相似文献   

11.
Tomato lectin is specific for oligomers of poly-N-acetyllactosamine containing 3 repeating Gal(beta 1-4)GlcNAc (beta 1-3)-disaccharides. As such it is highly useful for purifying oligosaccharides or glycopeptides with poly-N-acetyllactosamine character. We have found the lectin very useful as an affinity reagent for isolating glycoproteins or glycoprotein domains having poly-N-acetyllactosamine glycosylation. Conventional preparation of tomato lectin by ovomucoid-Sepharose affinity chromatography was found to be unsatisfactory due to instability of column and bleeding of ovomucoid into eluents requiring the necessity for additional purification steps following affinity chromatography. We prepared a column of human erythrocyte band 3 carbohydrate glycopeptide (erythroglycan) attached to Sepharose as an affinity matrix. The purification of tomato lectin to homogeneity in one step on this column matrix is described in this report.  相似文献   

12.
Carbohydrates have been suggested to account for some IgE cross- reactions between various plant, insect, and mollusk extracts, while some IgG antibodies have been successfully raised against plant glycoproteins. A rat monoclonal antibody raised against elderberry abscission tissue (YZ1/2.23) and rabbit polyclonal antiserum against horseradish peroxidase were screened for reactivity in enzyme-linked immunosorbent assay against a range of plant glycoproteins and extracts as well as neoglycoproteins, bee venom phospholipase, and several animal glycoproteins. Of the oligosaccharides tested, Man3XylFucGlcNAc2(MMXF3) derived from horseradish peroxidase was the most potent inhibitor of the reactivity of both YZ1/2.23 and anti- horseradish peroxidase to native horseradish peroxidase glycoprotein. The reactivity of YZ1/2. 23 and anti-horseradish peroxidase against Sophora japonica lectin was most inhibited by a neoglycoconjugate of bromelain glycopeptide cross-linked to bovine serum albumin, while the defucosylated form of this conjugate was inactive as an inhibitor. A wide range of plant extracts was found to react against YZ1/2.23 and anti-horseradish peroxidase, with particularly high reactivities recorded for grass pollen and nut extracts. All these reactivities were inhibitable with the bromelain glycopeptide/bovine serum albumin conjugate. Bee venom phospholipase and whole bee venom reacted weakly with YZ1/2.23 but more strongly with anti-horseradish peroxidase in a manner inhibitable with the bromelain glycopeptide/bovine serum albumin conjugate, while hemocyanin from Helix pomatia reacted poorly with YZ1/2.23 but did react with anti-horseradish peroxidase. It is concluded that the alpha1, 3-fucose residue linked to the chitobiose core of plant glycoproteins is the most important residue in the epitope recognized by the two antibodies studied, but that the polyclonal anti-horseradish peroxidase antiserum also contains antibody populations that recognize the xylose linked to the core mannose of many plant and gastropod N-linked oligosaccharides.   相似文献   

13.
Two carbohydrate-binding probes, the lectin concanavalin A and an anti-carbohydrate monoclonal antibody designated FMG-1, have been used to study the distribution of their respective epitopes on the surface of Chlamydomonas reinhardtii, strain pf-18. Both of these ligands bind uniformly to the external surface of the flagellar membrane and the general cell body plasma membrane, although the labeling is more intense on the flagellar membrane. In addition, both ligands cross-react with cell wall glycoproteins. With respect to the flagellar membrane, both concanavalin A and the FMG-1 monoclonal antibody bind preferentially to the principal high molecular weight glycoproteins migrating with an apparent molecular weight of 350,000 although there is, in addition, cross-reactivity with a number of minor glycoproteins. Western blots of V-8 protease digests of the high molecular weight flagellar glycoproteins indicate that the epitopes recognized by the lectin and the antibody are both repeated multiple times within the glycoproteins and occur together, although the lectin and the antibody do not compete for the same binding sites. Incubation of live cells with the monoclonal antibody or lectin at 4 degrees C results in a uniform labeling of the flagellar surface; upon warming of the cells, these ligands are redistributed along the flagellar surface in a characteristic manner. All of the flagellar surface-bound antibody or lectin collects into a single aggregate at the tip of each flagellum; this aggregate subsequently migrates to the base of the flagellum, where it is shed into the medium. The rate of redistribution is temperature dependent and the glycoproteins recognized by these ligands co-redistribute with the lectin or monoclonal antibody. This dynamic flagellar surface phenomenon bears a striking resemblance to the capping phenomenon that has been described in numerous mammalian cell types. However, it occurs on a structure (the flagellum) that lacks most of the cytoskeletal components generally associated with capping in other systems. The FMG-1 monoclonal antibody inhibits flagellar surface motility visualized as the rapid, bidirectional translocation of polystyrene microspheres.  相似文献   

14.
To accurately characterize the carbohydrate moieties of oligosaccharide chains in glycosylated proteins, it is necessary to distinguish exactly which types of oligosaccharides are present at which site. We describe lectin overlay assays, which take advantage of the ability of lectins to distinguish between different types of glycoproteins via recognition of terminal sugars, thus allowing the chain type and peripheral antigenic components to be determined. Three microassays involving lectins are reported in this paper: non-proteasetreated intact glycoproteins; glycopeptides released by prior digestion of the glycoprotein and then separated by HPLC; and release of sugars from glycoproteins by hydrazinolysis and then coupling them to a multivalent support.  相似文献   

15.
We recently reported that the human transferrin receptor (TfR) contains O-linked GalNAc residues [1]. To investigate whether this modification is shared by transferrin receptors in other mammals, we investigated the glycosylation of TfR in hamster cells. To facilitate our analysis the lectin-resistant Chinese hamster ovary (CHO) cell line Lec8 was used. These cells are unable to galactosylate glycoproteins, resulting in truncation of the Ser/Thr-linked oligosaccharides to a single residue of terminal alpha-linked GalNAc. This structure is bound with high affinity by the lectin Helix pomatia agglutinin (HPA). The TfR was affinity purified from Lec8 cells metabolically radiolabeled with [3H]glucosamine and the receptor was found to bind tightly to HPA-Sepharose. Treatment of the purified TfR with mild alkaline/borohydride released [3H]GalNAcitol, demonstrating the presence of O-linked GalNAc. We also found that many other unidentified [3H]glucosamine-labeled glycoproteins from Lec8 cells were bound by HPA-Sepharose. The bound and unbound glycoproteins were separated by SDS/PAGE and individual species were selected for treatment with mild base/borohydride. Treatment of glycoproteins bound by HPA, but not those unbound, resulted in the release of [3H]GalNAcitol. These studies demonstrate both that the hamster TfR contains O-linked oligosaccharides and that this approach may have general utility for identifying the presence of these oligosaccharides in other glycoproteins.  相似文献   

16.
Endogenous lectins in both cellular slime molds and chicken tissues have been localized primarily intracellularly, in contrast with the predominantly extracellular localization of the glycoproteins, glycolipids, and glycosaminoglycans with which they might interact. Here we present evidence that lectins in both of these organisms may be externalized and become associated with the cell surface and/or extracellular materials. In chicken intestine, chicken-lactose-lectin-II is shown to be localized in the secretory granules of the goblet cells, along with mucin, and to be secreted onto the intestinal surface. In embryonic muscle, chicken-lactose-lectin-I is shown to be externalized with differentiation, ultimately becoming localized on the surface of myotubes and in the extracellular spaces. In a cellular slime mold, Dictyostelium purpureum, externalization of lectin is elicited by either polyvalent glycoproteins that bind the small amount of endogenous cell surface lectin, or by slime mold or plant lectins that bind unoccupied complementary cell surface oligosaccharides. These results suggest that externalization of endogenous lectin may be a response to specific external signals. We conclude that lectins are frequently held in intracellular reserves awaiting release for specific external functions.  相似文献   

17.
We have previously shown that two serine residues present in two conserved regions of the bovine cation-independent mannose 6-phosphate receptor (CI-MPR) cytoplasmic domain are phosphorylated in vivo (residues 2421 and 2492 of the full length bovine CI-MPR precursor). In this study, we have used CHO cells to investigate the phosphorylation state of these two serines along the different steps of the CI-MPR exocytic and endocytic recycling pathways. Transport and phosphorylation of the CI-MPR in the biosynthetic pathway were examined using deoxymannojirimycin (dMM), a specific inhibitor of the cis-Golgi processing enzyme alpha-mannosidase I which leads to the accumulation of N-linked high mannose oligosaccharides on glycoproteins. Upon removal of dMM, normal processing to complex-type oligosaccharides (galactosylation and then sialylation) occurs on the newly synthesized glycoproteins, including the CI-MPR which could then be purified and analyzed on lectin affinity columns. Phosphorylation of the newly synthesized CI-MPR was concomitant with the sialylation of its oligosaccharides and appeared as a major albeit transient modification. Phosphorylation of the cell surface CI-MPR was examined during its endocytosis as well as its return to the Golgi using antibody tagging and exogalactosylation. The cell surface CI-MPR was not phosphorylated when it entered clathrin-coated pits or when it moved to the early and late endosomes. In contrast, the surface CI-MPR was phosphorylated when it had been resialylated upon its return to the trans-Golgi network. Subcellular fractionation experiments showed that the phosphorylated CI- MPR and the corresponding kinase were found in clathrin-coated vesicles. Collectively, these results indicate that phosphorylation of the two serines in the CI-MPR cytoplasmic domain is associated with a single step of transport of its recycling pathways and occurs when this receptor is in the trans-Golgi network and/or has left this compartment via clathrin-coated vesicles.  相似文献   

18.
Misfolded proteins are recognized in the endoplasmic reticulum (ER), transported back to the cytoplasm and degraded by the proteasome. Processing intermediates of N-linked oligosaccharides on incompletely folded glycoproteins have an important role in their folding/refolding, and also in their targeting to proteolytic degradation. In Saccharomyces cerevisiae, we have identified a gene coding for a non-essential protein that is homologous to mannosidase I (HTM1) and that is required for degradation of glycoproteins. Deletion of the HTM1 gene does not affect oligosaccharide trimming. However, deletion of HTM1 does reduce the rate of degradation of the mutant glycoproteins such as carboxypeptidase Y, ABC-transporter Pdr5-26p and oligosaccharyltransferase subunit Stt3-7p, but not of mutant Sec61-2p, a non-glycoprotein. Our results indicate that although Htm1p is not involved in processing of N-linked oligosaccharides, it is required for their proteolytic degradation. We propose that this mannosidase homolog is a lectin that recognizes Man8GlcNAc2 oligosaccharides that serve as signals in the degradation pathway.  相似文献   

19.
Cobra venom factor (CVF), a nontoxic, complement-activating glycoprotein in cobra venom, is a functional analog of mammalian complement component C3b. The carbohydrate moiety of CVF consists exclusively of N-linked oligosaccharides with terminal alpha1-3-linked galactosyl residues, which are antigenic in human. CVF has potential for several medical applications, including targeted cell killing and complement depletion. Here, we report a detailed structural analysis of the oligosaccharides of CVF. The structures of the oligosaccharides were determined by lectin affinity chromatography, antibody affinity blotting, compositional and methylation analyses, and high-resolution (1)H-NMR spectroscopy. Approximately 80% of the oligosaccharides are diantennary complex-type, approximately 12% are tri- and tetra-antennary complex-type, and approximately 8% are oligomannose type structures. The majority of the complex-type oligosaccharides terminate in Galalpha1-3Galbeta1-4(Fucalpha1-3)GlcNAcbeta1, a unique carbohydrate structural feature abundantly present in the glycoproteins of cobra venom.  相似文献   

20.
N-acetylglucosaminyltransferase I (GlcNAc-TI) catalyzes the first reaction in the conversion of ASN-linked cell surface oligosaccharides from a mannose-terminating structure to more complex carbohydrate structures. The mutant Chinese hamster ovary (CHO) cell line, Lec1, is deficient in this enzyme and, therefore, shows increased sensitivity to the lectin, Concanavalin A, which binds to the mannose-terminating oligosaccharides that accumulate on Lec1 cell surface glycoproteins. Spontaneous revertants of the Lec1 phenotype have never been observed. We report here the isolation of stable revertants of Lec1 cells to the parental CHO cell lectin-resistance phenotype after DNA-mediated transformation with human DNA. Both primary and secondary transformants express varying levels of GlcNAc-TI enzyme activity which was stable even when the cells were cultured in nonselective conditions. Human alu repeat DNA sequences are present in the primary transformants, but these sequences could not be detected in the secondary transformants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号