首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Association between extremely low frequency electromagnetic fields (ELF-EMF) and human cancers is controversial, and few studies have been conducted on their influence on oncogenic viruses. We studied the effects of 1 mT, 50 Hz sine waves, applied for 24-72 h, on Kaposi's sarcoma (KS)-associated herpesvirus (KSHV or HHV-8) in BCBL-1, a latently infected primary effusion lymphoma (PEL) cell line. ELF-EMF exposure did not affect the growth and viability of BCBL-1 cells, either stimulated or not with TPA. The total amount of KSHV DNA detected in ELF-EMF exposed cultures not stimulated with TPA did not differ from that of the unexposed controls (P = ns). However, in the presence of TPA stimulation, total KSHV DNA content was found higher in ELF-EMF exposed than in control BCBL-1 cultures (P = .024) at 72 h exposure, but not earlier. Viral DNA increase significantly correlated with increased mean fluorescence intensity/cell for the lytic antigen gp K8.1A/B (P < .01), but not with percentage of gp K8.1A/B-positive cells or of cells containing virions. Viral progeny produced under ELF-EMF exposure consisted mainly of defective viral particles.  相似文献   

2.
3.
4.
The effect of ELF-EMF on DNA through changes in antioxidative enzyme activities has not been sufficiently explored yet. The aim of this study was to determine ELF-EMF effect on antioxidative enzymes in cancer cell line and genotoxic potential on normal human lymphocytes. K562 cells were exposed to 50 Hz ELF-EMF (40 μT, 100 μT; 3 h, 24 h) and spectrophotometric determination of lipid peroxidation and antioxidative enzyme activities was conducted. Genotoxicity of ELF-EMF (50 Hz, 100 μT) was investigated by cytokinesis-block micronucleus assay in a normal human lymphocytes (exposure 24 h and 48 h). Results demonstrated that ELF-EMF did not alter the process of lipid peroxidation and superoxide dismutase activity. Catalase activity was increased only after application of 100 μT EMF for 24 h. Glutathione-S-transferase and -reductase activities were increased. Treatment with 100 μT ELF-EMF (24 h, 48 h) significantly reduced micronuclei incidence, while cell proliferation was significantly increased. Results indicate that 50 Hz ELF-EMF (40 μT, 100 μT) are week stressors which alone cannot generate enough ROS to induce process of lipid peroxidation in cancer cell line but strong enough to induce response of antioxidative system. Furthermore, 100 μT ELF-EMF in human lymphocytes did not exhibit genotoxic potential during 24 h and 48 h treatment, but stimulated cell proliferation.  相似文献   

5.
Extremely low frequency electromagnetic fields (ELF-EMFs) were reported to affect DNA integrity in human cells with evidence based on the Comet assay. These findings were heavily debated for two main reasons; the lack of reproducibility, and the absence of a plausible scientific rationale for how EMFs could damage DNA. Starting out from a replication of the relevant experiments, we performed this study to clarify the existence and explore origin and nature of ELF-EMF induced DNA effects. Our data confirm that intermittent (but not continuous) exposure of human primary fibroblasts to a 50 Hz EMF at a flux density of 1 mT induces a slight but significant increase of DNA fragmentation in the Comet assay, and we provide first evidence for this to be caused by the magnetic rather than the electric field. Moreover, we show that EMF-induced responses in the Comet assay are dependent on cell proliferation, suggesting that processes of DNA replication rather than the DNA itself may be affected. Consistently, the Comet effects correlated with a reduction of actively replicating cells and a concomitant increase of apoptotic cells in exposed cultures, whereas a combined Fpg-Comet test failed to produce evidence for a notable contribution of oxidative DNA base damage. Hence, ELF-EMF induced effects in the Comet assay are reproducible under specific conditions and can be explained by minor disturbances in S-phase processes and occasional triggering of apoptosis rather than by the generation of DNA damage.  相似文献   

6.
Induction of DNA synthesis by the tumor promoter tetradecanoyl phorbol acetate (TPA) was studied in a line of cultured rat fibroblasts (Rat-1) and their ffRous sarcoma virus-transformed derivative (Rat-1(RSV)). Following serum deprivation for 54 h to achieve quiescene, semiconservative DNA replication was measured by incubation of cells in BrdUrd and FdUrd after serum stimulation in the presence or absence of TPA. Optimal concentrations of TPA (0.1–0.5 μg/ ml) in serum-free medium induced a small increase (10–15%) in the amount of DNA made over a 30-h period in both Rat-1 and Rat-1 (RSV) cells. When Rat-1 cells were stimulated by a 4-h serum pulse, 30% of the DNA was replicated by 30 h. If the serum pulse was follwed by TPA addition, 702% DNA replication wass observed. If the serum pulse was preceded by TPA addition, the onset of DNA synthesis waas delayed by several hous, but stimulation of DNA synthesis occurred. In contrast, the Rat-1 (RSV) cells did not show an increase in DNA synthesis induced by TPA in similar protocols, but the serum-induced onset on DNA synthesis was delayed by several hours in the presence of TPA. Therefore, TPA acts as a co-inducer of DNA synthesis in the Rat-1 but not in the Rat-(RSV) cells. The parent alcohol, phorbol, was inactive in Rat-1 cells, but delayed the onset of DNA synthesis in the Rat(RSV) cells. We conclude that the co-inducing and delaying activities of TPA on DNA synthesis appear to be distinct and to act at different points in the G1 phase of the cell cycle.  相似文献   

7.
The issue of adverse health effects of extremely low-frequency electromagnetic fields (ELF-EMFs) is highly controversial. Contradictory results regarding the genotoxic potential of ELF-EMF have been reported in the literature. To test whether this controversy might reflect differences between the cellular targets examined we exposed cultured cells derived from different tissues to an intermittent ELF-EMF (50 Hz sinusoidal, 1 mT) for 1-24h. The alkaline and neutral comet assays were used to assess ELF-EMF-induced DNA strand breaks. We could identify three responder (human fibroblasts, human melanocytes, rat granulosa cells) and three non-responder cell types (human lymphocytes, human monocytes, human skeletal muscle cells), which points to the significance of the cell system used when investigating genotoxic effects of ELF-EMF.  相似文献   

8.
Results of epidemiological research show low association of electromagnetic field (EMF) with increased risk of cancerous diseases and missing dose-effect relations. An important component in assessing potential cancer risk is knowledge concerning any genotoxic effects of extremely-low-frequency-EMF (ELF-EMF).Human diploid fibroblasts were exposed to continuous or intermittent ELF-EMF (50Hz, sinusoidal, 24h, 1000microT). For evaluation of genotoxic effects in form of DNA single- (SSB) and double-strand breaks (DSB), the alkaline and the neutral comet assay were used.In contrast to continuous ELF-EMF exposure, the application of intermittent fields reproducibly resulted in a significant increase of DNA strand break levels, mainly DSBs, as compared to non-exposed controls. The conditions of intermittence showed an impact on the induction of DNA strand breaks, producing the highest levels at 5min field-on/10min field-off. We also found individual differences in response to ELF-EMF as well as an evident exposure-response relationship between magnetic flux density and DNA migration in the comet assay.Our data strongly indicate a genotoxic potential of intermittent EMF. This points to the need of further studies in vivo and consideration about environmental threshold values for ELF exposure.  相似文献   

9.
10.
The increasing prevalence of extremely low frequency electromagnetic fields (ELF-EMFs) exposure has raised considerable public concern regarding the potential hazardous effects of ELF-EMFs on male reproductive function. Increasing evidence indicates that miRNAs are necessary for spermatogenesis and male fertility. However, the regulation of miRNA expression and the roles of miRNAs in response to ELF-EMFs remain unclear. In our study, mouse spermatocyte-derived GC-2 cells were intermittently exposed to a 50 Hz ELF-EMF for 72 h (5 min on/10 min off) at magnetic field intensities of 1 mT, 2 mT and 3 mT. MiR-26b-5p was differentially expressed in response to different magnetic field intensities of ELF-EMFs. The host gene CTDSP1 showed an unmethylation status in GC-2 cells at different magnetic field intensities of ELF-EMF exposure. MiR-26b-5p had no significant, obvious influence on the cell viability, apoptosis or cell cycle of GC-2 cells. However, the overexpression of miR-26b-5p significantly decreased the percentage of G0/G1 phase cells and slightly increased the percentage of S phase cells compared to the sham group that was exposed to a 50 Hz ELF-EMF. Computational algorithms identified Cyclin D2 (CCND2) as a direct target of miR-26b-5p. MiR-26b-5p and a 50 Hz ELF-EMF altered the expression of CCND2 at both the mRNA and protein levels. Overexpressed miR-26b-5p in GC-2 cells can change the mRNA expression of CCND2 following 50 Hz ELF-EMF at 3 mT. These findings demonstrate that miR-26b-5p could serve as a potential biomarker following 50 Hz ELF-EMF exposure, and miR-26b-5p-CCND2-mediated cell cycle regulation might play a pivotal role in the biological effects of ELF-EMFs.  相似文献   

11.
12.
Several reports suggest that ELF-EMF exposures interact with biological processes including promotion of cell proliferation. However, the molecular mechanisms by which ELF-EMF controls cell growth are not completely understood. The present study aimed to investigate the effect of ELF-EMF on keratinocytes proliferation and molecular mechanisms involved. Effect of ELF-EMF (50 Hz, 1 mT) on HaCaT cell cycle and cells growth and viability was monitored by FACS analysis and BrdU assay. Gene expression profile by microarray and qRT-PCR validation was performed in HaCaT cells exposed or not to ELF-EMF. mTOR, Akt and MAPKs expressions were evaluated by Western blot analysis. In HaCaT cells, short ELF-EMF exposure modulates distinct patterns of gene expression involved in cell proliferation and in the cell cycle. mTOR activation resulted the main molecular target of ELF-EMF on HaCaT cells. Our data showed the increase of the canonical pathway of mTOR regulation (PI3K/Akt) and activation of ERK signaling pathways. Our results indicate that ELF-EMF selectively modulated the expression of multiple genes related to pivotal biological processes and functions that play a key role in physio-pathological mechanisms such as wound healing.  相似文献   

13.
14.
Effects of applying extremely low-frequency electromagnetic fields (ELF-EMF) for different durations (24, 48, and 72 h) and different field intensities (0.1–1.0 mT) on micronucleus (MN) formation and induction of apoptosis were examined in a human squamous cell carcinoma cell line (SCL II) and in a human amniotic fluid cell line (AFC). A statistically significant increase of MN frequency and of induction of apoptosis in SCL II cells after 48-h and 72-h continuous exposure to 50 Hz magnetic field (MF) (0.8 and 1.0 mT) was found. However, exposure of AFC cells to EMF of different intensities and for different exposure times showed no statistically significant differences when compared with controls. These results demonstrate that different human cell types respond differently to EMF. Dose-dependent induction of apoptosis and genotoxic effects, resulting in increased micronucleus formation, could be demonstrated in the transformed cell line, whereas the nontransformed cell line did not show statistically significant effects. These findings suggest that EMF could be a promotor but not an initiator of carcinogenic effects. Bioelectromagnetics 19:85–91, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
In this study, C57BL/6J mice were exposed to hyperoxia and allowed to recover in room air. The sublethal dose of hyperoxia for C57BL/6J was 48 h. Distal lung cellular isolates from treated animals were characterized as 98% epithelial, with minor fibroblast and endothelial cell contaminants. Cells were then verified as 95% pure alveolar epithelial type II cells (AEC2) by surfactant protein C (SP-C) expression. After hyperoxia exposure in vivo, fresh, uncultured AEC2 were analyzed for proliferation by cell yield, cell cycle, PCNA expression, and telomerase activity. DNA damage was assessed by TdT-dUTP nick-end labeling, whereas induction of DNA repair was evaluated by GADD-153 expression. A baseline level for proliferation and damage was observed in cells from control animals that did not alter significantly during acute hyperoxia exposure. However, a rise in these markers was observed 24 h into recovery. Over 72 h of recovery, markers for proliferation remained elevated, whereas those for DNA damage and repair peaked at 48 h and then returned back to baseline. The expression of GADD-153 followed a distinct course, rising significantly during acute exposure and peaking at 48 h recovery. These data demonstrate that in healthy, adult male C57BL/6J mice, AEC2 proliferation, damage, and repair follow separate courses during hyperoxia recovery and that both proliferation and efficient repair may be required to ensure AEC2 survival.  相似文献   

16.
Consistent and independently replicated laboratory evidence to support a causative relationship between environmental exposure to extremely low-frequency electromagnetic fields (EMFs) at power line frequencies and the associated increase in risk of childhood leukemia has not been obtained. In particular, although gene expression responses have been reported in a wide variety of cells, none has emerged as robust, widely replicated effects. DNA microarrays facilitate comprehensive searches for changes in gene expression without a requirement to select candidate responsive genes. To determine if gene expression changes occur in white blood cells of volunteers exposed to an ELF-EMF, each of 17 pairs of male volunteers age 20-30 was subjected either to a 50 Hz EMF exposure of 62.0 ± 7.1 μT for 2 h or to a sham exposure (0.21 ± 0.05 μT) at the same time (11:00 a.m. to 13:00 p.m.). The alternative regime for each volunteer was repeated on the following day and the two-day sequence was repeated 6 days later, with the exception that a null exposure (0.085 ± 0.01 μT) replaced the sham exposure. Five blood samples (10 ml) were collected at 2 h intervals from 9:00 to 17:00 with five additional samples during the exposure and sham or null exposure periods on each study day. RNA samples were pooled for the same time on each study day for the group of 17 volunteers that were subjected to the ELF-EMF exposure/sham or null exposure sequence and were analyzed on Illumina microarrays. Time courses for 16 mammalian genes previously reported to be responsive to ELF-EMF exposure, including immediate early genes, stress response, cell proliferation and apoptotic genes were examined in detail. No genes or gene sets showed consistent response profiles to repeated ELF-EMF exposures. A stress response was detected as a transient increase in plasma cortisol at the onset of either exposure or sham exposure on the first study day. The cortisol response diminished progressively on subsequent exposures or sham exposures, and was attributable to mild stress associated with the experimental protocol.  相似文献   

17.
Environmental exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) has been implicated in the development of cancer in humans. An important basis for assessing a potential cancer risk due to ELF-EMF exposure is knowledge of biological effects on human cells at the chromosomal level. Therefore, we investigated in the present study the effect of intermittent ELF electromagnetic fields (50 Hz, sinusoidal, 5'field-on/10'field-off, 2-24 h, 1 mT) on the induction of micronuclei (MN) and chromosomal aberrations in cultured human fibroblasts. ELF-EMF radiation resulted in a time-dependent increase of micronuclei, which became significant after 10 h of intermittent exposure at a flux density of 1 mT. After approximately 15 h a constant level of micronuclei of about three times the basal level was reached. In addition, chromosomal aberrations were increased up to 10-fold above basal levels. Our data strongly indicate a clastogenic potential of intermittent low-frequency electromagnetic fields, which may lead to considerable chromosomal damage in dividing cells.  相似文献   

18.
Exposure of human lymphocyte cultures to a pulsing electromagnetic field (PEMF; 50 Hz, 1.05 mT) for various durations (24, 48 and 72 h) resulted in a statistically significant suppression of mitotic activity and a higher incidence of chromosomal aberrations. Furthermore, the shorter exposure times (24 and 48 h) did not cause a significant delay in cell turnover (cell proliferation index) or an increase in the baseline frequency of sister-chromatid exchanges (SCE). However, cultures continuously exposed to PEMF for 72 h exhibited significant reduction of the cell proliferation index (CPI) and an elevation of SCE rate. These results suggest that exposure to PEMF may induce a type of DNA lesions that lead to chromosomal aberrations and cell death but not to SCE, except probably at longer exposure times.  相似文献   

19.
In the present study, we determined whether exposure of mammalian cells to 3.2-5.1 W/kg specific absorption rate (SAR) radiofrequency fields could induce DNA damage in murine C3H 10T(1/2) fibroblasts. Cell cultures were exposed to 847.74 MHz code-division multiple access (CDMA) and 835.62 frequency-division multiple access (FDMA) modulated radiations in radial transmission line (RTL) irradiators in which the temperature was regulated to 37.0 +/- 0.3 degrees C. Using the alkaline comet assay to measure DNA damage, we found no statistically significant differences in either comet moment or comet length between sham-exposed cells and those exposed for 2, 4 or 24 h to CDMA or FDMA radiations in either exponentially growing or plateau-phase cells. Further, a 4-h incubation after the 2-h exposure resulted in no significant changes in comet moment or comet length. Our results show that exposure of cultured C3H 10T(1/2) cells at 37 degrees C CDMA or FDMA at SAR values of up to 5.1 W/kg did not induce measurable DNA damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号