首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Dynamics of phenol degradation by Pseudomonas putida   总被引:3,自引:0,他引:3  
Pure cultures of Pseudomonas putida (ATCC 17484) were grown in continuous culture on phenol at dilution rates of 0.074-0.085 h(-1) and subjected to step increases in phenol feed concentration. Three distinct patterns of dynamic response were obtained depending on the size of the step change used: low level, moderate level, or high level. During low level responses no accumulations of phenol or non-phenol, non-glucose-dissolved organic carbon, DOC(NGP), were observed. Moderate level responses were characterized by the transient accumulation of DOC(NGP) with a significant delay prior to phenol leakage. High level responses demonstrated a rapid onset of phenol leakage and no apparent accumulations of DOC(NGP). The addition of phenol to a continuous culture of the same organism on glucose did not result in transient DOC(NGP) accumulations, although transient phenol levels exceeded 90 mg l(-1). These results were consistent with intermediate metabolite production during phenol step tests coupled with substrate-inhibited phenol uptake and suggested that traditional kinetic models based on the Haldane equation may be inadequate for describing the dynamics of phenol degrading systems. (c) 1993 John Wiley & Sons, Inc.  相似文献   

2.
The biodegradation of phenol by a pure culture of Pseudomonas putida was investigated in a continuously fed stirred-tank reactor, under aerobic conditions. The dilution rate was varied between 0.0174 h−1 and 0.278 h−1, covering a wide range of dissolved oxygen and the inhibition region of phenol. Through non-linear analysis of the data, a dual-substrate growth kinetics, Haldane kinetics for phenol and Monod kinetics for oxygen, was derived with high correlation coefficients. Respective biokinetic parameters were evaluated as μm = 0.569 h−1, K p = 18.539 mg/l, K i = 99.374 mg/l, K o = 0.048 mg/l, Y x/p = 0.521 g microorganism/g phenol and Y x/o = 0.338 g microorganism/g oxygen, being in good agreement with other studies in the literature. Maintenance factors for both phenol and oxygen were calculated for the first time for P. putida while the saturation coefficient for oxygen, K o, was genuinely evaluated from the constructed model, not imported or adapted from other studies as reported in the literature. All pertinent biokinetic parameters for P. putida have been calculated from continuous system data, which are most appropriate for use in continuous bioprocess applications. Received: 29 July 1996 / Received revision: 18 November 1996 / Accepted: 23 November 1996  相似文献   

3.
Pseudomonas putida (MTCC 1194) has been used to degrade phenol in water in the concentration range 100–1000?ppm. The inhibition effects of phenol as substrate have become predominant above the concentration of 500?ppm (5.31?mmoles/dm3). The optimum temperature and initial pH required for maximum phenol biodegradation were 30?°C and 7.00 respectively. From the degradation data the activation energy (E a ) was found to be equal to 13.8?kcal/g mole substrate reacted. The most suitable inoculum age and volume for highest phenol degradation were 12?hrs and 7% v/v respectively. Surfactants had negligible effect on phenol biodegradation process for this microorganism. Monod model has been used to interpret the free cell data on phenol biodegradation. The kinetic parameters have been estimated upto initial concentration of 5.31?mmoles/dm3. μ max and K S gradually increased with higher concentration of phenol. However, beyond the phenol concentration of 5.31?mmoles/dm3, the inhibition became prominant. The μ max has been to be a strong function of initial phenol concentration. The simulated and the experimental phenol degradation profiles have good correspondence with each other.  相似文献   

4.
Alginate concentrations between 2 and 4% had little effect on the degradation rate of phenol by alginate-immobilized Pseudomonas putida. Ten-degree shifts from 25°C resulted in approximately 30% slower degradation. Maximal degradation rates were favored at pH 5.5–6.0. The response of degradation rate to increased air flow in the bubble column used was almost linear and an optimal higher than 16 vol vol−1 was indicated, although free cells appeared in the reaction medium above 12 vol vol−1. When the initial phenol concentration was raised, degradation rate was not significantly affected until levels higher than 1200 mg ml−1 where performance was markedly reduced. Increasing the ratio of total bead volume to medium volume gave progressively smaller increases in degradation rate. At a medium volume to total bead volume ratio of 5:1, the maximum degradation rate was 250 mg L−1 h−1. Received 24 November 1998/ Accepted in revised form 27 January 1999  相似文献   

5.
Uptake rate of phenol by Pseudomonas putida grown in unsteady state   总被引:1,自引:0,他引:1  
The uptake rate of phenol by washed cells of Pseudomonas putidagrown on phenol in fermenter in an un steady state, caused by the step increase of dilution rate and/or phenol concentration in the feed, was studied. The Monod-Haldane type equation was applied to fit the data and the best kinetic parameters were calculated by nonlinear least-square techniques. It was found that the minimum period of unsteady state required for induction of the phenol metabolic pathway was approximately 30 min. The values of kinetic parameters in an unsteady state varied according to each parameter. The values of u(m) first monotonically increased to reach their highest value after about 120 min and then monotonically decreased to equal the u(m) in new steady state after about five residence times. No regularity in changing of K(s) and K(i), in unsteady state was observed. However, the greatest change in the values of K(i), was 45% while the change in values of K(s) was as much as two times compared to K(i) and K(s) in steady state prior to disturbance.  相似文献   

6.
Degradation of phenol and phenolic compounds by Pseudomonas putida EKII   总被引:3,自引:0,他引:3  
Summary The phenol-degrading strain Pseudomonas putida EKII was isolated from a soil enrichment culture and utilized phenol up to 10.6 mM (1.0 g·1 -1) as the sole source of carbon and energy. Furthermore, cresols, chlorophenols, 3,4-dimethylphenol, and 4-chloro-m-cresol were metabolized as sole substrates by phenol-grown resting cells of strain EKII. Under conditions of cell growth, degradation of these xenobiotics was achieved only in co-metabolism with phenol. Phenol hydroxylase activity was detectable in whole cells but not in cell-free extracts. The specificity of the hydroxylating enzyme was found during transformation of cresols and chlorophenols: ortho- and meta-substituted phenols were degraded via 3-substituted catechols, while degradation of para-substituted phenols proceeded via 4-substituted catechols. In cell-free extracts of phenol-grown cells a high level of catechol 2,3-dioxygenase as well as smaller amounts of 2-hydroxymuconic semialdehyde hydrolyase and catechol 1,2-dioxygenase were detected. The ring-cleaving enzymes were characterized after partial purification by DEAE-cellulose chromatography.  相似文献   

7.
Adenosine phosphate and NAD cofactors play a vital role in the operation of cell metabolism, and their levels and ratios are carefully regulated in tight ranges. Perturbations of the consumption of these metabolites might have a great impact on cell metabolism and physiology. Here, we investigated the impact of increased ATP hydrolysis and NADH oxidation rates on the metabolism of Pseudomonas putida KT2440 by titration of 2,4-dinitrophenol (DNP) and overproduction of a water-forming NADH oxidase, respectively. Both perturbations resulted in a reduction of the biomass yield and, as a consequence of the uncoupling of catabolic and anabolic activities, in an amplification of the net NADH regeneration rate. However, a stimulation of the specific carbon uptake rate was observed only when P. putida was challenged with very high 2,4-dinitrophenol concentrations and was comparatively unaffected by recombinant NADH oxidase activity. This behavior contrasts with the comparably sensitive performance described, for example, for Escherichia coli or Saccharomyces cerevisiae. The apparent robustness of P. putida metabolism indicates that it possesses a certain buffering capacity and a high flexibility to adapt to and counteract different stresses without showing a distinct phenotype. These findings are important, e.g., for the development of whole-cell redox biocatalytic processes that impose equivalent burdens on the cell metabolism: stoichiometric consumption of (reduced) redox cofactors and increased energy expenditures, due to the toxicity of the biocatalytic compounds.  相似文献   

8.
This study led to the extension and refinement of our current model for the global response of Pseudomonas putida KT2440 to phenol by getting insights into the adaptive response mechanisms involving the membrane proteome. A two-dimensional gel electrophoresis based protocol was optimized to allow the quantitative comparison of membrane proteins, by combining inner and outer membrane fractionation with membrane protein solubilization using the detergent dodecylmaltoside. Following phenol exposure, a coordinate increased content of protein subunits of known or putative solvent efflux pump systems (e.g. TtgA, TtgC, Ttg2A, Ttg2C, and PP_1516-7) and a decreased content of porins OprB, OprF, OprG and OprQ was registered, consistent with an adaptive response to reduce phenol intracellular concentration. This adaptive response may in part be mediated by post-translational modifications, as suggested by the relative content of the multiple forms identified for a few porins and efflux pump subunits. Results also suggest the important role of protein chaperones, of cell envelope and cell surface and of a more active respiratory chain in the response to phenol. All these mechanistic insights may be extended to Pseudomonas adaptation to solvents, of possible impact in biodegradation, bioremediation and biocatalysis.  相似文献   

9.
A cold-sensitive mutant of Pseudomonas putida has been isolated which grows normally at 30 C but is unable to grow on mandelate as a source of carbon at 15 C. The mutation results in the inability of the strain to carry out the reaction catalyzed by cis,cis-muconate lactonizing enzyme at low temperature and must lie in the structural gene for that enzyme, because the mutant enzyme produced at 30 C shows altered thermal stability. The mutant enzyme is not intrinsically cold-labile, nor is it cold-labile at the moment of synthesis. The activity of the mutant enzyme is not inhibited at low temperature. Evidence is presented to establish that this mutation in the structural gene coding for cis,cis-muconate lactonizing enzyme results in the lack of expression of that gene at low temperature.  相似文献   

10.
Three indole analogues, 5-methylindole, 5-fluoroindole, and 7-methylindole, and the tryptophan analogue 5-fluorotryptophan were found to inhibit the growth of wild-type Pseudomonas putida. Mutants resistant to these analogues were obtained. Some of the 5-fluoroindole- and 5-fluorotryptophan-resistant strains exhibit an abnormality in the regulation of certain trp genes. These strains excrete anthranilate when grown in minimal medium in the presence or absence of the inhibitor. In these strains, the trpA, B, and D gene products, the first, second, and fourth enzymes of the tryptophan pathway, are produced in 20-fold excess over the normal wild-type level. The other enzymes of the pathway are unaffected. Exogenous tryptophan is still able to repress the expression of the trpABD cluster somewhat. Similarity between the 5-fluoroindole- and 5-fluorotryptophan-resistant strains suggests that the former compound becomes effective through conversion to the latter. Repression and derepression experiments with two anthranilate-excreting, 5-fluoroindole-resistant strains showed coordinate variation of the affected enzymes. The locus conferring resistance and excretion is not linked by transduction to any of the trp genes.  相似文献   

11.
A semiempirical model, based on the presence of an inhibitory intermediate metabolite excreted to the broth, was developed to better predict the dynamic responses to shock loadings of Pseudomonas putida Q5 degrading phenol. Compared to the Haldane equation, the new model exhibited better prediction capabilities for a broad range of inlet concentration and dilution rate step changes. The experiments were performed at 10 degrees and 25 degrees C and ranged from stable responses to washouts. The time delays observed experimentally were successfully predicted with the dual-inhibition model and a very good agreement with the observed phenol profile also was found in a pulse experiment. A possible intermediate metabolite was detected by HPLC analyses based on the high correlation shown with the predicted inhibitory intermediate metabolite in the model.  相似文献   

12.
The degradation of phenol (100-2800 mg/L) by cells Pseudomonas putida CCRC14365 in an extractive hollow-fiber membrane bioreactor (HFMBR) was studied, in which the polypropylene fibers were prewetted with ethanol. The effects of flow velocity, the concentrations of phenol, and the added dispersive agent tetrasodium pyrophosphate on phenol degradation and cell growth were examined. It was shown that about 10% of phenol was sorbed on the fibers at the beginning of the degradation process. The cells P. putida fully degraded 2000 mg/L of phenol within 73 h when the cells were immobilized and separated by the fibers. Even at a level of 2800 mg/L, phenol could be degraded more than 90% after 95-h operation. At low phenol levels (< 400 mg/L) where substrate inhibition was not severe, it was more advantageous to treat the solution in a suspended system. At higher phenol levels (> 1000 mg/L), however, such HFMBR-immobilized cells could degrade phenol to a tolerable concentration with weak substrate-inhibition effect, and the degradation that followed could be completed by suspended cultures due to their larger degradation rate. The process development in an HFMBR system was also discussed.  相似文献   

13.
Biological membranes have evolved different mechanisms to modify their composition in response to chemical stimuli in a process called 'homeoviscous adaptation'. Among these mechanisms, modifications in the ratio of saturated/unsaturated fatty acids and in cis/trans fatty acid isomers, cyclopropanation and changes in the phospholipids head group composition have been observed. To further understand the role of phospholipid head groups in solvent stress adaptation, we knocked out the cls (cardiolipin synthase) gene in Pseudomonas putida DOT-T1E. As expected, cls mutant membranes contained less cardiolipin than those of the wild-type strain. Although no significant growth rate defect was observed in the cls mutant compared with the wild-type strain, mutant cells were significantly smaller than the wild-type cells. The cls mutant was more sensitive to toluene shocks and to several antibiotics than the parental strain, suggesting either that the RND efflux pumps involved in the extrusion of these drugs were not working efficiently or that membrane permeability was altered in the mutant. Membranes of the cls mutant strain seemed to be more rigid than those of the parental strain, as observed by measurements of fluorescence polarization using the DPH probe, which intercalates into the membranes. Ethidium bromide is pumped out in Pseudomonas putida by at least one RND efflux pump involved in antibiotic and solvent resistance, and the higher rate of accumulation of ethidium bromide inside mutant cells indicated that functioning of the efflux pumps was compromised as a consequence of the alteration in phospholipid head group composition.  相似文献   

14.
《Trends in microbiology》2020,28(6):512-513
  相似文献   

15.
The mechanism of Zn resistance in multiple metal-resistant Pseudomonas putida strain S4 is based on inducible efflux. An ATPase in the strain S4 mediated active extrusion of Zn2+, which occurred during the exponential phase of growth. The ATPase activity was inhibited by micromolar concentrations (50 M) of vanadate, suggesting the involvement of a P-type ATPase. The effluxed Zn2+ were not ejected out of the cell but stored in the outer membrane and periplasm, which provided the required binding sites. The strain S4, thus, employs a dual strategy of efflux and binding to bring about a proper management of essential ions like Zn.  相似文献   

16.
A cadmium-resistant bacterium Pseudomonas putida CD2 was isolated from sewage sludge samples. Strain CD2 exhibited high maximal tolerant concentrations (MTC) for a large spectrum of divalent metals. Screening a library obtained using Tn5-B21 insertion mutagenesis resulted in identification of 12 mutants with a substantial decrease in resistance to 3 mM cadmium. The DNA sequences of the contiguous region from the Tn5 insertion sites were determined by inverse PCR. Six genes involved in cadmium resistance were identified. These genes were from three gene clusters: czcCBA1, cadA2R and colRS. The homologs of the first two gene clusters were predicted to be metal efflux systems, whereas the products of colRS, ColR and ColS, were thought to be a two-component signal transduction (TCST) system. In this study, we have demonstrated that ColRS also function in regulating multi-metal resistance using genetic complementation.  相似文献   

17.
A genomic library of the phenol-degrading bacterium Pseudomonas putida BH was constructed in the broad host range cosmid pVK100 and introduced into Escherichia coli HB101. One of the recombinant cosmids recovered from catechol- and/or 2-hydroxymuconic semialdehyde-accumulating clones, pS10–45, had a 19.6-kb insert fragment which allowed P. putida KT2440 to grow on phenol as a sole carbon and energy source. Subcloning and expression studies indicated that the phenol hydroxylase gene cluster (pheA) is located on a 6.1-kb SacI fragment. The results of DNA sequencing of the SacI fragment revealed that the pheA gene cluster encodes a multicomponent phenol hydroxylase.  相似文献   

18.
Biodegradation of phenol by Pseudomonas putida (NICM 2174), a potential biodegradent of phenol has been investigated for its degrading potential under different conditions. Pseudomonas putida (NICM 2174) cells immobilized in chitosan were used to degrade phenol. Adsorption of phenol by the chitosan immobilized matrix played an important role in reducing the toxicity of phenol. In the present work, results of the batch equilibrium adsorption of phenol on chitosan from its aqueous solution at different particle sizes (0.177 mm, 0.384 mm, 1.651 mm) and initial concentration of phenol (20, 40, 60, 80, 100, 120, 140, 160, 180, 200 mg/l) have been reported. The adsorption isotherms are described by Langmuir, Freundlich and Redlich-Peterson types of equations. These indicate favourable adsorption with chitosan. From the adsorption isotherms, the adsorption capacity, energy of adsorption, number of layers and the rate constants were evaluated. In batch kinetic studies the factors affecting the rate of biodegradation of phenol, were initial phenol concentration (0.100 g/l, 0.200 g/l, 0.300 g/l), temperature (30v°C, 34v°C, 38v°C) and pH (7.0, 8.0, 9.0). Biodegradation kinetic data indicated the applicability of Lagergren equation. The process followed first order rate kinetics. The biodegradation data generally fit the Lagergren equation and the intraparticle diffusion rate equation from which adsorption rate constants, diffusion rate constants and diffusion coefficients were determined. Intraparticle diffusion was found to be the rate-limiting step. Cell growth contributed significantly to phenol removal rates especially when the degradation medium was supplemented with a utilizable carbon source.  相似文献   

19.
Microbial conversion offers a promising strategy for overcoming the intrinsic heterogeneity of the plant biopolymer, lignin. Soil microbes that natively harbour aromatic-catabolic pathways are natural choices for chassis strains, and Pseudomonas putida KT2440 has emerged as a viable whole-cell biocatalyst for funnelling lignin-derived compounds to value-added products, including its native carbon storage product, medium-chain-length polyhydroxyalkanoates (mcl-PHA). In this work, a series of metabolic engineering targets to improve mcl-PHA production are combined in the P. putida chromosome and evaluated in strains growing in a model aromatic compound, p-coumaric acid, and in lignin streams. Specifically, the PHA depolymerase gene phaZ was knocked out, and the genes involved in β-oxidation (fadBA1 and fadBA2) were deleted. Additionally, to increase carbon flux into mcl-PHA biosynthesis, phaG, alkK, phaC1 and phaC2 were overexpressed. The best performing strain – which contains all the genetic modifications detailed above – demonstrated a 53% and 200% increase in mcl-PHA titre (g l−1) and a 20% and 100% increase in yield (g mcl-PHA per g cell dry weight) from p-coumaric acid and lignin, respectively, compared with the wild type strain. Overall, these results present a promising strain to be employed in further process development for enhancing mcl-PHA production from aromatic compounds and lignin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号