首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of a stable PGI2 analog, 13, 14-dehydro-PGI2 methyl ester and several vasoactive hormones were compared in the feline intestinal vascular bed under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. The PGI2 analog decreased perfusion pressure in a dose-dependent fashion when injected in the range of dose of 0.03–3 μg and was quite similar to PGE2 whereas isoproterenol was somewhat more potent as a vasodilator in the feline intestinal vascular bed. The present data show that 13, 14-dehydro-PGI2 methyl ester has potent vasodilator activity in the intestinal vascular bed.  相似文献   

2.
The effects of leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in the feline mesenteric vascular bed were investigated under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. Intra-arterial injections of LTC4 and LTD4 (0.3-3.0 micrograms) increased perfusion pressure in a dose-related fashion. Vasoconstrictor responses to LTC 4 and LTD4 were similar to norepinephrine (NE) whereas mesenteric vasoconstrictor response to the thromboxane analog, U46619, was markedly greater than were responses to LTC4 and LTD4. Meclofenamate in a dose that greatly attenuated the systemic depressor response to arachidonic acid was without effect on vasoconstrictor responses to LTC4 and LTD4, NE and U46619 in the mesenteric vascular bed. The present data show that LTC4 and LTD4 possess significant vasoconstrictor activity in the feline mesenteric vascular bed. In addition, the present data suggest that products of the cyclooxygenase pathway do not mediate vasoconstrictor responses to LTC4 and LTD4 in the intestinal circulation of the cat.  相似文献   

3.
The effects of leukotriene C4 (LTC4) and leukotriene D4 (LTD4) in the feline mesenteric vascular bed were investigated under conditions of controlled blood flow so that changes in perfusion pressure directly reflect changes in vascular resistance. Intra-arterial injections of LTC4 and LTD4 (0.3–3.0 μg) increased perfusion pressure in a dose-related fashion. Vasoconstrictor responses to LTC4 and LTD4 were similar to norepinephrine (NE) whereas mesenteric vasoconstrictor response to the thromboxane analog, U46619, was markedly greater than were responses to LTC4 and LTD4. Meclofenamate in a dose that greatly attenuated the systemic depressor response to arachidonic acid was without effect on vasoconstrictor responses to LTC4 and LTD4, NE and U46619 in the mesenteric vascular bed. The present data show that LTC4 and LTD4 possess significant vasoconstrictor activity in the feline mesenteric vascular bed. In addition, the present data suggest that products of the cyclooxygenase pathway do not mediate vasoconstrictor responses to LTC4 and LTD4 in the intestinal circulation of the cat.  相似文献   

4.
We investigated the effect of indomethacin on responses to isoproterenol, bradykinin and nitroglycerin in the feline pulmonary vascular bed when pulmonary vascular resistance was actively increased by infusion of U46619 in order to determine if vasodilator responses to these agents were dependent on the integrity of the cyclooxygenase pathway. Since pulmonary blood flow and left atrial pressure were held constant, changes in lobar arterial pressure directly reflect changes in lobar vascular resistance. Intralobar injections of isoproterenol, bradykinin, and nitroglycerin decreased lobar arterial pressure in a dose-related manner. Pulmonary vasodilator responses to the lower and midrange doses of bradykinin and nitroglycerin were unchanged in the presence of indomethacin whereas pulmonary responses to the highest doses of nitroglycerin and bradykinin were increased by cyclooxygenase blockade. In contrast, pulmonary vasodilator responses to isoproterenol were significantly attenuated in the presence of propranolol, whereas pulmonary vasodilator responses to bradykinin and nitroglycerin were unchanged after beta blockade. The present data indicate that isoproterenol, bradykinin, and nitroglycerin have significant vasodilator activity in the cat when pulmonary vascular tone is actively increased. These data suggest that the formation of vasodilator cyclooxygenase products such as PGI2 do not mediate vasodilator responses to isoproterenol, bradykinin, and nitroglycerin in the feline pulmonary vascular bed.  相似文献   

5.
Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat   总被引:1,自引:0,他引:1  
We investigated the effects of vasoactive intestinal peptide (VIP) in the feline pulmonary vascular bed under conditions of controlled pulmonary blood flow when pulmonary vascular tone was at base-line levels and when vascular resistance was elevated. Under base-line conditions, VIP caused small but significant reductions in lobar arterial pressure without affecting left atrial pressure. Decreases in lobar arterial pressure in response to VIP were greater and were dose related when lobar vascular resistance was increased by intralobar infusion of U 46619, a stable prostaglandin endoperoxide analogue. Acetylcholine and isoproterenol also caused significant decreases in lobar arterial pressure under base-line conditions, and responses to these agents were enhanced when lobar vascular tone was elevated. Moreover, when doses of these agents are expressed in nanomoles, acetylcholine and isoproterenol were more potent than VIP in decreasing lobar arterial pressure. Responses to VIP were longer in duration with a slower onset than were responses to acetylcholine or isoproterenol. Pulmonary vasodilator responses to VIP were unchanged by indomethacin, atropine, or propranolol. The present data demonstrate that VIP has vasodilator activity in the pulmonary vascular bed and that responses are dependent on the existing level of vasoconstrictor tone. These studies indicate that this peptide is less potent than acetylcholine or isoproterenol in dilating the feline pulmonary vascular bed and that responses to VIP are not dependent on a muscarinic or beta-adrenergic mechanism or release of a dilator prostaglandin.  相似文献   

6.
Pulmonary vascular responses to endothelin-2 and sarafotoxin 6b were investigated in the feline pulmonary vascular bed under natural flow and constant flow conditions. Injections of endothelin-2 and sarafotoxin 6b in a dose of 0.3 nmol/kg iv increased pulmonary arterial and left atrial pressures and cardiac output, and caused a biphasic change in calculated pulmonary vascular resistance. Endothelin-2 caused a biphasic change in systemic arterial pressure, while sarafotoxin 6b only decreased arterial pressure. Under constant flow conditions in the intact-chest cat, injections of endothelin-2 and sarafotoxin 6b in doses of 0.1-1 nmol into the perfused lobar artery increased lobar arterial pressure in a dose-related manner but were less potent than the thromboxane A2 mimic, U46619. An ET analog with only the Cys1-Cys15 disulfide bond and an amidated carboxy terminus had no significant activity in the pulmonary vascular bed. The present data show that endothelin-2 and sarafotoxin 6b have significant vasoconstrictor activity in the pulmonary vascular bed of the cat.  相似文献   

7.
Authentic PGI2 and PGI2 formed by rat stomach homogenates were carried through a simple extraction and purification procedure to explore the feasibility of isolation of this biologically active bicyclic ether product of arachidonic acid. The integrity of PGI2 was followed throughout by bioassay on the rat blood pressure. In this system we recently reported that PGI2 has very potent hypotensive actions which are easily distinguishable from those observed for PGE2 (14). Our results indicate that PGI2 survives the initial extraction steps (i.e. ethanol extraction, diethyl ether - HCl extraction and methylation) up to the step involving thin layer chromatography with an acidic developing solvent system. This latter procedure converts PGI2 entirely into a stable derivative, 6-keto-PGF1alpha (3,8--10). Oxidative ozonolysis of the methyl ester acetate derivative of authentic 6-keto PGF1alpha reveals products identical to those reported by Pace-Asciak and Wolfe in 1971 (1) which are also produced from authentic PGI2. This data sheds new light into 1) the nature of the biological product formed by stomach homogenates, 2) its transformation into 6-keto PGF1alpha during purification and 3) the origin of the ozonolysis products in the experiments reported in 1971.  相似文献   

8.
《Life sciences》1994,55(22):PL433-PL438
Responses to synthetic human adrenomedullin (ADM), a novel hypotensive peptide recently discovered in human pheochromocytoma cells, and calcitonin gene-related peptide (CGRP), a structurally related peptide, were investigated in the hintquarters vascular bed of the rat. Under conditions of controlled hintquarters blood flow, intraarterial injections of ADM (0.01–0.3 nmol) and of CGRP (0.03–0.3 nmol) caused dose-related decreases in hindquarters perfusion pressure and decreases in systemic arterial pressure. Following administration of the nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester (L-NAME), hindquarters vasodilator and systemic depressor responses to ADM were significantly decreased, whereas L-NAME did not significantly decrease the vasodilator response to CGRP in either the hindquarters or systemic vascular beds. Following administration of the cyclooxygenase inhibitor, meclofenamate, vasodilator responses to ADM and to CGRP were not significantly decreased. When the relative vasodilator activity of the two peptides was compared on a nmol basis, responses to ADM were similar to responses with CGRP in the hindquarters vascular bed, whereas ADM was 30–100 fold less potent than CGRP in decreasing systemic arterial pressure. The present data demonstrate that ADM has significant vasodilator activity in the hindquarters vascular bed of the rat, that hindquarters vasodilator and systemic vasodepressor responses to ADM, but not to CGRP, are dependent upon the release of nitric oxide from the endothelium.  相似文献   

9.
The purposes of this study were to examine the protein expressions of endothelial and inducible nitric oxide synthase (eNOS and iNOS) of the rat intestinal smooth muscle, and to elucidate the role of nitric oxide (NO) in the reactivity of the superior mesenteric artery (SMA) to vasoconstrictors following intraperitoneal (i.p.) injection of pancreatic juice. Immunohistochemistry was used to observe the protein expressions of eNOS and iNOS in the intestinal tissues 15 h after i.p. injection of pancreatic juice (1 ml/100 g body weight). To test the vascular reactiveness, SMA was isolated and perfused with Tyrode's solution at a constant flow rate of 5 ml/min. The changes in perfusion pressure as the measure of contractile responses to phenylephrine (PE) were monitored. I.P. injection of pancreatic juice induced increases of plasma levels of tumor necrosis factor α (TNFα) (P < 0.001; N = 7) and NO (P < 0.001; N = 7). Nω-nitro-L-arginine methyl ester (L-NAME) reduced the release of TNFα and NO. There were 8.3 ± 1.2-fold and 11.4 ± 2.8-fold increases in the protein expressions of eNOS and iNOS, respectively, in the intestinal tissue after pancreatic juice injection. PE (10?? ~ 10?? M) produced a dose-dependent vasoconstrictive effects on the SMA bed. Contractile responses to PE were attenuated in pancreatic juice-treated group. Addition of L-NAME (10?? M) resulted in full recovery of the responses to phenylephrine in SMA bed, while aminoguanidine (AG, 10?? M) caused only partial recovery. Our results indicate that i.p. injection of pancreatic juice results in a decrease in vascular reactivity of mesenteric vessels that is dependent on both eNOS and iNOS expressions in the intestinal vascular bed. Overproduction of NO elicits intestinal low vascular reactivity.  相似文献   

10.
11.
Allicin, an extract from garlic, has been shown to be a systemic and pulmonary arterial vasodilator that acts by an unknown mechanism. In the present experiments, pulmonary vascular responses to allicin (10-100 microg), allyl mercaptan (0.3-1 mg), and diallyl disulfide (0.3-1 mg) were studied in the isolated lung of the rat under constant-flow conditions. When baseline tone in the pulmonary vascular bed of the rat was raised to a high-steady level with the thromboxane A(2) mimic U-46619, dose-related decreases in pulmonary arterial pressure were observed. In terms of the mechanism of action of allicin vasodilator activity in the rat, responses to allicin were not significantly different after administration of the nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester, the K(ATP)(+) channel antagonist U-37883A, or the cyclooxygenase inhibitor sodium meclofenamate, or when lung ventilation was interrupted. These data show that allicin has significant vasodilator activity in the pulmonary vascular bed of the rat, whereas allyl mercaptan and diallyl disulfide produced no significant changes in pulmonary arterial perfusion pressure. The present data suggest that pulmonary vasodilator responses to allicin are independent of the synthesis of nitric oxide, ATP-sensitive K(+) channels, activation of cyclooxygenase enzyme, or changes in bronchomotor tone in the pulmonary vascular bed of the rat.  相似文献   

12.
The purpose of the present study was to determine the influence of NG-nitro-L-arginine methyl ester (L-NAME) on pulmonary vascular responses to endothelium-dependent relaxing factor- (EDRF) dependent and EDRF-independent substances in the pulmonary vascular bed of the anesthetized cat. Because pulmonary blood flow and left atrial pressure were kept constant, changes in lobar arterial pressure directly reflect changes in pulmonary vascular resistance. When pulmonary vasomotor tone was actively increased by intralobar infusion of U-46619, intralobar bolus injections of acetylcholine, bradykinin, serotonin, and 5-carboxyamidotryptamine (a serotonin1A receptor agonist) decreased lobar arterial pressure in a dose-related manner. The pulmonary vasodilator response to serotonin, but not to 5-carboxyamidotryptamine, acetylcholine, and bradykinin, was significantly decreased by L-NAME (100 mg/kg i.v.). Administration of ritanserin (0.5 mg/kg i.v.), but not L-arginine (1 g/kg i.v. with 60 mg.kg-1 x min-1 i.v. infusion), reversed the inhibitory effects of L-NAME on the pulmonary vasodilator response to serotonin and abolished the enhanced pulmonary vasoconstrictor response to (+-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminoproprane hydrochloride (a serotonin2 receptor agonist) after L-NAME administration. In conclusion, the present experiments suggest that L-NAME inhibits the pulmonary vasodilator response to serotonin by increasing the sensitivity of serotonin2 receptor-mediated vasoconstriction and not by inhibiting EDRF formation. Because the pulmonary vasodilator responses to bolus administration of acetylcholine and bradykinin were not inhibited by L-NAME, these data suggest that L-NAME does not appear to be an adequate probe to study the role of endogenous EDRF in the adult feline pulmonary vascular bed in vivo.  相似文献   

13.
Recent studies of renal autoregulation have shown modulation of the faster myogenic mechanism by the slower tubuloglomerular feedback and that the modulation can be detected in the dynamics of the myogenic mechanism. Conceptual and empirical considerations suggest that perfusion pressure may modulate the myogenic mechanism, although this has not been tested to date. Here we present data showing that the myogenic operating frequency, assessed by transfer-function analysis, varied directly as a function of perfusion pressure in the hydronephrotic kidney perfused in vitro over the range from 80 to 140 mmHg. A similar result was obtained in intact kidneys in vivo when renal perfusion pressure was altered by systemic injection of N(G)-nitro-L-arginine methyl ester (L-NAME). When perfusion pressure was not allowed to increase, L-NAME did not affect the myogenic operating frequency despite equivalent reduction of renal vascular conductance. Blood-flow dynamics were assessed in the superior mesenteric artery before and after L-NAME. In this vascular bed, the operating frequency of the myogenic mechanism was not affected by perfusion pressure. Thus the operating frequency of the renal myogenic mechanism is modulated by perfusion pressure independently of tubuloglomerular feedback, and the data suggest some degree of renal specificity of this response.  相似文献   

14.
Vasodilating prostaglandins were injected, in bolus doses, into the lower abdominal aorta or left circumflex coronary artery (LCCA) of conscious sheep. Local blood flow, mean arterial pressure (MAP), heart rate (HR) and ECG were monitored continuously. 6-Keto PGF1 alpha had no effect on either vascular bed in doses up to 100 micrograms. PGE2 was more potent than PGI2 in dilating hindlimb vasculature and PGE2 induced a more persistent hyperaemia whereas PGD2 elicited a biphasic response (constriction-dilation). PGE1, PGE2, PGD2 and PGI2 all produced dose-dependent vasodilation, the order of potency being PGD2 greater than PGI2 greater than PGE1 greater than or equal to PGE2. The effect of PGI2 was more transient and PGE1 and PGD2 caused small but consistent decreases in MAP and HR, respectively.  相似文献   

15.
Metabolism of prostaglandin endoperoxide by microsomes from cat lung   总被引:1,自引:0,他引:1  
It has been reported that the prostaglandin (PG) precursor, arachidonic acid, produces divergent hemodynamic responses in the feline pulmonary vascular bed. However, the pattern of arachidonic acid products formed in the lung of this species is unknown. In order to determine the type and activity of terminal enzymes in the lung, prostaglandin biosynthesis by microsomes from cat lung was studied using the prostaglandin endoperoxide, PGH2, as a substrate. The major products of incubations of PGH2 with microsomes were thromboxane (TX) B2 (the major metabolite of TXA2), 6-keto-PGF1 alpha (the breakdown product of PGI2) and 12L-hydroxy-5,8,10-heptadecatrienoic acid (HHT). Formation of TXB2 was markedly reduced by imidazole. Tranylcypromine decreased the formation of TXB2 and HHT and inhibited the formation of 6-keto-PGF1 alpha. At low PGH2 concentrations, equal production of TXB2 and 6-keto-PGF1 alpha was observed. However, as PGH2 concentration increased, 6-keto-PGF1 alpha production approached early saturation while TXB2 production increased in a linear fashion. These results suggest that enzymatic formation of TXA2 and PGI2 is a function of substrate availability in the lung. These findings provide a possible explanation for the divergent hemodynamic responses to arachidonic acid infusions at high and low concentrations in the feline pulmonary vascular bed.  相似文献   

16.
Prostaglandin E2 (PGE2) and 6 keto-PGF1 alpha, the stable metabolite of prostacyclin (PGI2), have been measured in the effluent of perfused rat mesenteric arteries by the use of a sensitive and specific radioimmunoassay (RIA) method. The PGE2 and 6 keto-PGF1 alpha were continuously released by the unstimulated mesenteric artery over a period of 145 min. After 100 min of perfusion the release of PGE2 and 6 keto-PGF1 alpha was 45.1 +/- 8.4 pg/min and 254 +/- 75 pg/min respectively, which is in accord with the general belief that PGI2 is the major PG synthesized by arterial tissue. Angiotensin II (AII) (5 ng/ml) induced an increase of PGE2 and 6 keto-PGF1 alpha release without changing the perfusion pressure. The effect of norepinephrine (NE) injections on release of PGs depended on the duration of the stabilization period. The changes of perfusion pressure induced by NE were not related to changes in release of PGs. Thus, it seems that the increase of PG release induced by AII and NE was due to a direct effect of the drugs on the vascular wall. This may represent an important modulating mechanism in the regulation of vascular tone.  相似文献   

17.
Responses to pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide derived from ovine hypothalamus with 68% sequence homology with vasoactive intestinal polypeptide (VIP), were investigated in the pulmonary and hindquarters vascular beds of the anesthetized cat under conditions of controlled blood flow. Injection of the peptide into the perfused lung lobe under elevated tone conditions produced dose-dependent decreases in lobar arterial pressure that were accompanied by biphasic changes in systemic arterial pressure characterized by an initial decrease followed by a secondary increase in pressure. When compared with other vasodilator agents in the pulmonary vascular bed, the relative order of potency was isoproterenol greater than PACAP greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP. In the hindquarters vascular bed, intra-arterial injections of PACAP produced biphasic changes in hindquarters perfusion pressure characterized by initial decreases followed by secondary increases, which were accompanied by biphasic changes in systemic arterial pressure. In terms of relative vasodilator activity in the hindlimb, the order of relative potency was isoproterenol greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP greater than PACAP. PACAP was the only agent that caused a secondary vasoconstrictor response in the hindlimb and produced biphasic changes in systemic arterial pressure. D-Phe2-VIP, a VIP receptor antagonist, blocked the hindquarters vasodilation in response to VIP but had no effect on responses to PACAP. The present investigation shows that PACAP produces pulmonary vasodilation, as well as dilation, and vasoconstriction in the systemic (hindlimb) vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We investigated the effect of indomethacin on responses to isoproterenol, bradykinin and nitroglycerin in the feline pulmonary vascular bed when pulmonary vascular resistance was actively increased by infusion of U46619 in order to determine if vasodilator responses to these agents were dependent on the integrity of the cyclooxygenase pathway. Since pulmonary blood flow left atrial pressure were held constant, changes in lobar arterial pressure directly reflect changes in lobar vascular resistance. Intralobar injections of isoproterenol, bradykinin, and nitroglycerin decreased lobar arterial pressure in a dose-related manner. Pulmonary vasodilator responses to the lower and midrange doses of bradykinin and nitrogylcerin were unchanged in the presence of indomethacin whereas pulmonary responses to the highest doses of nitroglycerin and bradykinin were increased by cyclooxygenase blockade. In contrast, pulmonary vasodilator responses to isoproterenol were significantly attenuated in the presence of propranolol, whereas pulmonary vasodilator responses to bradykinin and nitroglycerin were unchanged after beta blockade. The present data indicate that isoproterenol, bladykinin, and nitroglycerin have significant vasodilator activity in the cat when pulmonary vascular tone is actively increased. These data suggest that the formation of vasodilator cyclooxygenase products such as PGI2 do not mediate vasodilator responses to isoproterenol, bradykinin, and nitroglycerin in the feline pulmonary vascular bed.  相似文献   

19.
The cardiovascular and pulmonary responses to vasoactive intestinal contractor (VIC) were compared with those of endothelin (ET)-1, ET-2, ET-3 and sarafotoxin 6b (S6b) and the mechanism by which ET-1 alters vascular resistance was investigated in the hindquarters vascular bed of the cat. In a manner similar to ET-1 and ET-2, VIC at a dose of 0.3 nmol/kg i.v. produced increases in pulmonary arterial pressure (PAP) and biphasic changes in systemic arterial pressure (AP), systemic vascular resistance (SVR) and pulmonary vascular resistance (PVR). The biphasic changes were characterized by initial decreases followed by increases. In contrast, ET-3 and S6b at doses of 0.3 nmol/kg i.v. produced mainly decreases in AP and SVR, increases in PAP, and biphasic changes in PVR. A monocyclic ET-1 analog and the ET-1 C-terminal hexapeptide fragment produced no effect on AP, SVR, PAP and PVR at doses of 30–100 nmol/kg i.v. ET-1 at a dose of 0.3 nmol i.a. produced a biphasic change in hindquarters perfusion pressure. The initial vasodilation and secondary vasoconstriction were not modified by a variety of blocking agents, whereas the vasoconstrictor response was significantly reduced by infusion of nimodipine, a calcium entry blocking agent. Results of the present study indicate that VIC, a peptide specific to the mouse gastrointestinal tract, elicits cardiovascular responses that are similar to those elicited by ET-1 and ET-2. The present results indicate that responses to these novel peptides are complex and while the mechanism of action remains uncertain, these data indicate that structural differences among the peptides confer differences in biological activity.  相似文献   

20.
The effects of G?-6976, a Ca(2+)-dependent protein kinase C (PKC) isozyme inhibitor, and rottlerin, a PKC-delta isozyme/calmodulin (CaM)-dependent kinase III inhibitor, on responses to vasopressor agents were investigated in the feline pulmonary vascular bed. Injections of angiotensin II, norepinephrine (NE), serotonin, BAY K 8644, and U-46619 into the lobar arterial constant blood flow perfusion circuit caused increases in pressure. G?-6976 reduced responses to angiotensin II; however, it did not alter responses to serotonin, NE, or U-46619, whereas G?-6976 enhanced BAY K 8644 responses. Rottlerin reduced responses to angiotensin II and NE, did not alter responses to serotonin or U-46619, and enhanced responses to BAY K 8644. Immunohistochemistry of feline pulmonary arterial smooth muscle cells demonstrated localization of PKC-alpha and -delta isozymes in response to phorbol 12-myristate 13-acetate and angiotensin II. Localization of PKC-alpha and -delta isozymes decreased with administration of G?-6976 and rottlerin, respectively. These data suggest that activation of Ca(2+)-dependent PKC isozymes and Ca(2+)-independent PKC-delta isozyme/CaM-dependent kinase III mediate angiotensin II responses. These data further suggest that Ca(2+)-independent PKC-delta isozyme/CaM-dependent kinase III mediate responses to NE. A rottlerin- or G?-6976-sensitive mechanism is not involved in mediating responses to serotonin and U-46619, but these PKC isozyme inhibitors enhanced BAY K 8644 responses in the feline pulmonary vascular bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号