首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Antiestrogens are efficient inhibitors of estrogen-mediated growth of human breast cancer. Besides inhibiting estradiol-stimulated growth, antiestrogens may have a direct growth-inhibitory effect on estrogen receptor (ER) positive cells and thus be more efficient than aromatase inhibitors, which will only abrogate estrogen-dependent tumor growth. To address this issue, we have used the human breast cancer cell line MCF-7/S9 as a model system which is maintained in a chemically defined medium without serum and estrogen. The addition of estradiol results in an increase in cell growth rate. Thus, the MCF-7/S9 cell line is estrogen-responsive but not estrogen-dependent. Three different types of antiestrogens, namely tamoxifen, ICI 182,780 and EM-652 were found to exert a significant and dose-dependent inhibition of basal growth of MCF-7/S9 cells. The growth-inhibitory effect of the three antiestrogens was prevented by simultaneous estradiol treatment. Antiestrogen treatment also reduced the basal pS2 mRNA expression level, thus indicating spontaneous estrogenic activity in the cells. However, treatment with the aromatase inhibitor had no effect on basal cell growth, excluding that endogenous estrogen synthesis is involved in basal growth. These data demonstrate that in addition to their estrogen antagonistic effect, antiestrogens have a direct growth-inhibitory effect which is ER-mediated. Consequently, in the subset of ER positive breast cancer patients with estrogen-independent tumor growth, antiestrogen therapy may be superior to treatment with aromatase inhibitors which only inhibit estrogen formation but do not affect cancer cell growth in the absence of estrogens.  相似文献   

4.
Estrogen receptors covalently labeled with the estrogen affinity label [3H]ketononestrol aziridine (KNA) or with the antiestrogen affinity label [3H]tamoxifen aziridine (TAZ) were subjected to limited proteolysis with trypsin, alpha-chymotrypsin, and Staphylococcus aureus V8 protease and then analyzed on 10-20% sodium dodecyl sulfate-polyacrylamide gradient gels followed by fluorography. The similar molecular weights of intact receptors (Mr 66,000 daltons) and the proteolytic digest patterns indicate extensive homology among estrogen receptors from MCF-7 human breast cancer cells, GH4 rat pituitary cells and rat uterus when liganded with estrogen or antiestrogen. Each protease generated a distinctive ladder of estrogen receptor fragments, and the fragmentation patterns were virtually identical for estrogen receptors labeled with estrogen (KNA) or antiestrogen (TAZ). Each protease yielded a relatively "resistant" receptor fragment of about 28,000-35,000 daltons. Trypsin and chymotrypsin at higher concentrations generated a much smaller 6,000-8,000 dalton digest product that still contained the [3H]KNA- or [3H]TAZ-labeled receptor binding site. Moreover, the receptor digest patterns were similar for estrogen receptors from the three different target cells. Our studies suggest considerable structural relatedness among these three estrogen receptors and also indicate that these two affinity labels bind to a similar, perhaps identical, region of the receptor molecule.  相似文献   

5.
Structure of the human oestrogen-responsive gene pS2.   总被引:12,自引:1,他引:12       下载免费PDF全文
  相似文献   

6.
7.
8.
9.
10.
NH2-terminal amino acid sequence of the pS2 protein produced and secreted by human gastric cancer cells, MKN-45, was determined to be identical to that of MCF-7 cells. A clone encoding pS2 protein was isolated from the cDNA library constructed from MKN-45 cells. The nucleotide sequence was identical to that of pS2 cDNA previously isolated from human breast cancer cells, MCF-7, except for one nucleotide in the 3' untranslated region. Thus, in this cell line, the pS2 gene product is translated and secreted as in MCF-7 cells. RNA blot hybridization analysis revealed that pS2 gene was expressed well in two (MKN-45 and KATO-III; derived from poorly differentiated adenocarcinoma) but not in three cell lines (MKN-1, MKN-28 and MKN-74; from well differentiated adenocarcinoma), suggesting that expression of the pS2 gene depends on the state of cell differentiation. These results suggest that pS2 is expressed in human gastric cancer cells in an estrogen-independent manner and is possibly associated with the malignant state of cells.  相似文献   

11.
Studies on estrogen receptor (ER)-positive human breast cancer cell lines have shown that estrogen treatment positively modulates the expression of the genes encoding transforming growth factor-alpha (TGF alpha), 52-kDa cathepsin-D, and pS2. To determine whether these genes would be similarly regulated by estrogens in normal human mammary epithelial cells, we stably transfected immortal nontumorigenic human mammary epithelial cells with an ER-encoding expression vector. ER-negative tumor cells were also transfected for comparison. Levels of TGF alpha and 52-kDa cathepsin-D mRNA were enhanced by estrogen treatment of both ER-transfected immortal and tumorigenic cells, demonstrating that the ER by itself is sufficient to elicit estrogenic regulation of the expression of these genes. In contrast, expression of the pS2 gene was detected only in the ER-transfected tumor cells. The ER in both cell lines is capable of recognizing the pS2 promoter, however, since estrogen enhanced the activity of an introduced pS2-CAT reporter plasmid in transient expression analyses. These and other experiments with somatic cell hybrids between the immortal cells and ER+/pS2+ MCF-7 tumor cells, where pS2 gene expression is extinguished, support the conclusion that the immortal nontumorigenic cells encode gene products that block endogenous pS2 expression. These results also imply that such repressors are not active in the tumor cells.  相似文献   

12.
13.
Varma H  Skildum AJ  Conrad SE 《PloS one》2007,2(12):e1256
Estrogens are required for the proliferation of hormone dependent breast cancer cells, making estrogen receptor (ER) positive tumors amenable to endocrine therapies such as antiestrogens. However, resistance to these agents remains a significant cause of treatment failure. We previously demonstrated that inactivation of the retinoblastoma protein (pRb) family tumor suppressors causes antiestrogen resistance in MCF-7 cells, a widely studied model of estrogen responsive human breast cancers. In this study, we investigate the mechanism by which pRb inactivation leads to antiestrogen resistance. Cdk4 and cdk2 are two key cell cycle regulators that can phosphorylate and inactivate pRb, therefore we tested whether these kinases are required in cells lacking pRb function. pRb family members were inactivated in MCF-7 cells by expressing polyomavirus large tumor antigen (PyLT), and cdk activity was inhibited using the cdk inhibitors p16(INK4A) and p21(Waf1/Cip1). Cdk4 activity was no longer required in cells lacking functional pRb, while cdk2 activity was required for proliferation in both the presence and absence of pRb function. Using inducible PyLT cell lines, we further demonstrated that pRb inactivation leads to increased cyclin A expression, cdk2 activation and proliferation in antiestrogen arrested cells. These results demonstrate that antiestrogens do not inhibit cdk2 activity or proliferation of MCF-7 cells in the absence of pRb family function, and suggest that antiestrogen resistant breast cancer cells resulting from pRb pathway inactivation would be susceptible to therapies that target cdk2.  相似文献   

14.
15.
16.
17.
17beta-Estradiol (E2), diethylstilbestrol (DES) and several synthetic (or xenoestrogenic) compounds induced transactivation in MCF-7 or MDA-MB-231 cells transfected with wild-type estrogen receptor alpha (ERalpha) and a construct (pERE(3)) containing three tandem estrogen responsive elements (EREs) linked to a luciferase gene. In contrast, the antiestrogens ICI 182,780 and 4-hydroxytamoxifen (4-OHT) were inactive in this assay. We have investigated the effects of these compounds and several structurally-diverse estrogenic compounds on transactivation in cells transfected with pERE(3) and wild-type ERalpha, mutant ERalpha (1-553), and ERalpha (1-537) containing deletions of amino acids 595-554 and 595-538, respectively. These constructs were used to develop an in vitro assay to distinguish between different structural classes of estrogenic compounds. The results obtained using these constructs were highly cell context- and structure-dependent. Neither E2- nor diethylstilbestrol-induced transactivation in MCF-7 (or MDA-MB-231) cells transfected with pERE(3)/ERalpha (1-537) due to partial deletion of helix 12; however, octylphenol and nonlylphenol, resveratrol (a phytoestrogen), kepone and 2',3',4',5'-tetrachloro-4-biphenylol were "estrogenic" in MCF-7 cells transfected with pERE(3)/ERalpha (1-537). Moreover, the structure-dependent estrogenic activities of several synthetic estrogens (xenoestrogens) in MDA-MB-231 cells were different than those observed in MCF-7 cells. These results demonstrate that the estrogenic activity of many synthetic compounds do not require activation function 2 (AF-2) of ERalpha and are mechanistically different from E2. These data suggest that xenoestrogens are selective ER modulators (SERMs).  相似文献   

18.
19.
Environmental estrogenic endocrine disruptors are a health concern. Here we constructed a dual cell-line green fluorescence protein (GFP) expression system to identify and study endocrine disrupting compounds with activities of estrogen receptor agonists or antagonists. Human breast cancer MCF-7 cells and endometrial carcinoma Ishikawa cells were infected with a two tandem estrogen response elements--E4 promoter-GFP reporter gene construct. The use of GFP reporter enabled direct and simple evaluations of cell responses. GFP intensity in stably transfected MCF7-GFP and Ishikawa-GFP cells was dose-responsive to 17-beta-estradiol, diethylstilbestrol, 2-hydroxyestradiol, and environmental toxins bisphenol A, genistein and o-p'-DDT. Raloxifene and tamoxifen were effective antiestrogens in MCF7-GFP cells, but acted as partial estrogen receptor agonists in Ishikawa-GFP cells at concentrations of 0.1 nM and above. No synergistic effect was observed in chemical combinations between organochlorine pesticides methoxychlor, o-p'-DDT, p-p'-DDT, nor between estradiol and estrone. In summary, for the first time the effects of estrogen receptor agonists or antagonists were compared between mammary and endometrial cancer cells both stably expressing identical plasmids with GFP reporter genes under the control of tandem estrogen response elements. This dual cell-line system provides a rapid method and sensitive assay to identify environmental estrogens, antiestrogens, selective estrogen receptor modulators and to study their tissue specific effects and chemical interactions. Such a system is especially useful for direct and parallel toxicity assessments with a microfluidic cell culture device.  相似文献   

20.
M B Somasekhar  J Gorski 《Gene》1988,69(1):13-21
The 5'-flanking region of the rat prolactin gene contains two DNase I-hypersensitive (HS) sites. We used gene transfer experiments to determine the nucleotide (nt) sequences within and around these two HS sites that may contain the information necessary for regulation of prolactin gene expression by estrogens and glucocorticoids. A chimeric gene construct (pPRL.CAT) was prepared by covalently linking the sequence of the rat prolactin gene to the bacterial chloramphenicol acetyltransferase-coding gene, cat. Rat GH3 cells were transfected with pPRL.CAT and six mutants that possess deletions within and around the two HS sites. Incubation of such transfectants with estrogen or dexamethasone indicated the existence of two functionally important elements within the 5'-flanking region of the rat prolactin gene. The element required for estrogen up-regulation of the prolactin gene is located between nt residues -1530 through -1950. The glucocorticoid down-regulatory element is located between nt -200 and +75.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号