首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
ASPP proteins specifically stimulate the apoptotic function of p53.   总被引:23,自引:0,他引:23  
We identified a family of proteins termed ASPP. ASPP1 is a protein homologous to 53BP2, the C-terminal half of ASPP2. ASPP proteins interact with p53 and specifically enhance p53-induced apoptosis but not cell cycle arrest. Inhibition of endogenous ASPP function suppresses the apoptotic function of endogenous p53 in response to apoptotic stimuli. ASPP enhance the DNA binding and transactivation function of p53 on the promoters of proapoptotic genes in vivo. Two tumor-derived p53 mutants with reduced apoptotic function were defective in cooperating with ASPP in apoptosis induction. The expression of ASPP is frequently downregulated in human breast carcinomas expressing wild-type p53 but not mutant p53. Therefore, ASPP regulate the tumor suppression function of p53 in vivo.  相似文献   

4.
5.
6.
7.
8.
The p53-inducible gene product p21(WAF1/CIP1) plays a critical role in regulating the rate of tumor incidence, and identifying mechanisms of its post-translational regulation will define key pathways that link growth control to p21-dependent tumor suppression. A eukaryotic cell model system has been developed to determine whether protein kinase signaling pathways that phosphorylate human p21 exist in vivo and whether such pathways regulate the binding of p21 to one of its key target proteins, proliferating cell nuclear antigen (PCNA). Although human p21 expressed in Sf9 cells is able to form a complex with human PCNA, the inclusion of cell-permeable phosphatase inhibitors renders p21 protein inactive for PCNA binding. The treatment of this inactive isoform of p21 with alkaline phosphatase restores its binding to PCNA, suggesting that p21 expressed in Sf9 cells is subject to reversible phosphorylation at a key regulatory site(s). A biochemical approach was subsequently used to map the phosphorylation sites within p21, whose modification in vitro can inhibit p21-PCNA complex formation, to the C-terminal domain at residues Thr(145) or Ser(146). A phospho-specific antibody was developed that only bound to full-length p21 protein after phosphorylation in vitro at Ser(146), and this reagent was further used to demonstrate that the inactive isoform of p21 recovered from Sf9 cells treated with phosphatase inhibitors had been phosphorylated in vivo at Ser(146). These data identify the first phosphorylation site within the C-terminal regulatory domain of p21 whose modification in vivo modulates p21-PCNA interactions and define a eukaryotic cell model that can be used to study post-translational signaling pathways that regulate p21.  相似文献   

9.
10.
The adenovirus E1A protein interferes with regulators of apoptosis and growth by physically interacting with cell cycle regulatory proteins including the retinoblastoma tumor suppressor protein and the coactivator proteins p300/CBP (where CBP is the CREB-binding protein). The p300/CBP proteins occupy a pivotal role in regulating mitogenic signaling and apoptosis. The mechanisms by which cell cycle control genes are directly regulated by p300 remain to be determined. The cyclin D1 gene, which is overexpressed in many different tumor types, encodes a regulatory subunit of a holoenzyme that phosphorylates and inactivates PRB. In the present study E1A12S inhibited the cyclin D1 promoter via the amino-terminal p300/CBP binding domain in human choriocarcinoma JEG-3 cells. p300 induced cyclin D1 protein abundance, and p300, but not CBP, induced the cyclin D1 promoter. cyclin D1 or p300 overexpression inhibited apoptosis in JEG-3 cells. The CH3 region of p300, which was required for induction of cyclin D1, was also required for the inhibition of apoptosis. p300 activated the cyclin D1 promoter through an activator protein-1 (AP-1) site at -954 and was identified within a DNA-bound complex with c-Jun at the AP-1 site. Apoptosis rates of embryonic fibroblasts derived from mice homozygously deleted of the cyclin D1 gene (cyclin D1(-/-)) were increased compared with wild type control on several distinct matrices. p300 inhibited apoptosis in cyclin D1(+/+) fibroblasts but increased apoptosis in cyclin D1(-/-) cells. The anti-apoptotic function of cyclin D1, demonstrated by sub-G(1) analysis and annexin V staining, may contribute to its cellular transforming and cooperative oncogenic properties.  相似文献   

11.
12.
A role for EF-hand calcium-binding protein Mts1 (S100A4) in the phosphorylation and the assembly of myosin filaments was studied. The nonmuscle myosin molecules form bipolar filaments, which interact with actin filaments to produce a contractile force. Phosphorylation of the myosin plays a regulatory role in the myosin assembly. In the presence of calcium, Mts1 binds at the C-terminal end of the myosin heavy chain close to the site of phosphorylation by protein kinase CK2 (Ser1944). In the present study, we have shown that interaction of Mts1 with the human platelet myosin or C-terminal fragment of the myosin heavy chain inhibits phosphorylation of the myosin heavy chain by protein kinase CK2 in vitro. Mts1 might also bind directly the beta subunit of protein kinase CK2, thereby modifying the enzyme activity. Our results indicate that myosin oligomers were disassembled in the presence of Mts1. The short C-terminal fragment of the myosin heavy chain was totally soluble in the presence of an equimolar amount of Mts1 at low ionic conditions (50 mM NaCl). Depolymerization was found to be calcium-dependent and could be blocked by EGTA. Our data suggest that Mts1 can increase myosin solubility and therefore suppress its assembly.  相似文献   

13.
In vitro experiments have demonstrated intercellular trafficking of the VP22 tegument protein of herpes simplex virus type 1 from infected cells to neighboring cells, which internalize VP22 and transport it to the nucleus. VP22 also can mediate intercellular transport of fusion proteins, providing a strategy for increasing the distribution of therapeutic proteins in gene therapy. Intercellular trafficking of the p53 tumor suppressor protein was demonstrated in vitro using a plasmid expressing full-length p53 fused in-frame to full-length VP22. The p53-VP22 chimeric protein induced apoptosis both in transfected tumor cells and in neighboring cells, resulting in a widespread cytotoxic effect. To evaluate the anti-tumor activity of p53-VP22 in vivo, we constructed recombinant adenoviruses expressing either wild-type p53 (FTCB) or a p53-VP22 fusion protein (FVCB) and compared their effects in p53-resistant tumor cells. In vitro, treatment of tumor cells with FVCB resulted in enhanced p53-specific apoptosis compared to treatment with equivalent doses of FTCB. However, in normal cells there was no difference in the dose-related cytotoxicity of FVCB compared to that of FTCB. In vivo, treatment of established tumors with FVCB was more effective than equivalent doses of FTCB. The dose-response curve to FVCB was flatter than that to FTCB; maximal antitumor responses could be achieved using FVCB at doses 1 log lower than those obtained with FTCB. Increased antitumor efficacy was correlated with increased distribution of p53 protein in FVCB-treated tumors. This study is the first demonstration that VP22 can enhance the in vivo distribution of therapeutic proteins and improve efficacy in gene therapy.  相似文献   

14.
15.
The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 40% of breast cancers and are indicative of tumor resistance to chemotherapeutic agents. Recently, there has been a high degree of interest in pharmacological approaches for restoring the normal function to mutant p53. The low molecular weight compound p53 reactivation and induction of massive apoptosis (PRIMA-1) was shown to induce cytotoxic effects and apoptosis in human tumor cells with mutant p53. Here, we studied the molecular mechanisms of PRIMA-1-induced apoptosis in human breast cancer cells with p53 mutations such as MDA-231 and GI-101A as compared to MCF-7 cells. We show that PRIMA-1 selectively induces apoptosis in human breast cancer cells MDA-231 and GI-101A compared to the MCF-7. This effect was paralleled by an increase in total p53 level in the nucleus and the induction of its phosphorylation at Ser-15 site. Using the chromatin immunoprecipitation (ChIP) assays, we show that PRIMA-1 restored p53 DNA binding activity to the promoters of the proapoptotic genes such as Bax and PUMA, but inhibited the binding activity to the promoters of the MAP4K4 gene. Knockdown of p53 protein in breast cancer cells using siRNA followed by PRIMA-1 treatment resulted in decline of Bax and PUMA proteins expression. Cell incubation with either PRIMA-1 or SP600125 (c-Jun NH2-terminal kinase inhibitor) resulted in the abrogation of adriamycin-induced c-Jun NH2-terminal kinase (JNK) activation, whereas Bax activation was not inhibited. We conclude that both Bax and PUMA but not JNK signaling are involved in PRIMA-1-induced apoptosis in breast cancer cells with p53 mutation.  相似文献   

16.
17.
18.
Regulation of the specific DNA binding function of p53.   总被引:95,自引:0,他引:95  
T R Hupp  D W Meek  C A Midgley  D P Lane 《Cell》1992,71(5):875-886
The DNA binding activity of p53 is required for its tumor suppressor function; we show here that this activity is cryptic but can be activated by cellular factors acting on a C-terminal regulatory domain of p53. A gel mobility shift assay demonstrated that recombinant wild-type human p53 binds DNA sequence specifically only weakly, but a monoclonal antibody binding near the C terminus activated the cryptic DNA binding activity stoichiometrically. p53 DNA binding could be activated by a C-terminal deletion of p53, mild proteolysis of full-length p53, E. coli dnaK (which disrupts protein-protein complexes), or casein kinase II (and coincident phosphorylation of a C-terminal site on p53). Activation of p53 DNA binding may be critical in regulation of its ability to arrest cell growth and thus its tumor suppressor function.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号