首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An 84-kDa group VI phospholipase A2 (iPLA2) that does not require Ca2+ for catalysis has been cloned from Chinese hamster ovary cells, murine P388D1 cells, and pancreatic islet beta-cells. A housekeeping role for iPLA2 in generating lysophosphatidylcholine (LPC) acceptors for arachidonic acid incorporation into phosphatidylcholine (PC) has been proposed because iPLA2 inhibition reduces LPC levels and suppresses arachidonate incorporation and phospholipid remodeling in P388D1 cells. Because islet beta-cell phospholipids are enriched in arachidonate, we have examined the role of iPLA2 in arachidonate incorporation into islets and INS-1 insulinoma cells. Inhibition of iPLA2 with a bromoenol lactone (BEL) suicide substrate did not suppress and generally enhanced [3H]arachidonate incorporation into these cells in the presence or absence of extracellular calcium at varied time points and BEL concentrations. Arachidonate incorporation into islet phospholipids involved deacylation-reacylation and not de novo synthesis, as indicated by experiments with varied extracellular glucose concentrations and by examining [14C]glucose incorporation into phospholipids. BEL also inhibited islet cytosolic phosphatidate phosphohydrolase (PAPH), but the PAPH inhibitor propranolol did not affect arachidonate incorporation into islet or INS-1 cell phospholipids. Inhibition of islet iPLA2 did not alter the phospholipid head-group classes into which [3H]arachidonate was initially incorporated or its subsequent transfer from PC to other lipids. Electrospray ionization mass spectrometric measurements indicated that inhibition of INS-1 cell iPLA2 accelerated arachidonate incorporation into PC and that inhibition of islet iPLA2 reduced LPC levels by 25%, suggesting that LPC mass does not limit arachidonate incorporation into islet PC. Gas chromatography/mass spectrometry measurements indicated that BEL but not propranolol suppressed insulin secretagogue-induced hydrolysis of arachidonate from islet phospholipids. In islets and INS-1 cells, iPLA2 is thus not required for arachidonate incorporation or phospholipid remodeling and may play other roles in these cells.  相似文献   

2.
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.  相似文献   

3.
Studies involving pharmacologic or molecular biologic manipulation of Group VIA phospholipase A(2) (iPLA(2)beta) activity in pancreatic islets and insulinoma cells suggest that iPLA(2)beta participates in insulin secretion. It has also been suggested that iPLA(2)beta is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels and arachidonate incorporation into phosphatidylcholine (PC). We have generated iPLA(2)beta-null mice by homologous recombination and have reported that they exhibit reduced male fertility and defective motility of spermatozoa. Here we report that pancreatic islets from iPLA(2)beta-null mice have impaired insulin secretory responses to D-glucose and forskolin. Electrospray ionization mass spectrometric analyses indicate that the abundance of arachidonate-containing PC species of islets, brain, and other tissues from iPLA(2)beta-null mice is virtually identical to that of wild-type mice, and no iPLA(2)beta mRNA was observed in any tissue from iPLA(2)beta-null mice at any age. Despite the insulin secretory abnormalities of isolated islets, fasting and fed blood glucose concentrations of iPLA(2)beta-null and wild-type mice are essentially identical under normal circumstances, but iPLA(2)beta-null mice develop more severe hyperglycemia than wild-type mice after administration of multiple low doses of the beta-cell toxin streptozotocin, suggesting an impaired islet secretory reserve. A high fat diet also induces more severe glucose intolerance in iPLA(2)beta-null mice than in wild-type mice, but PLA(2)beta-null mice have greater responsiveness to exogenous insulin than do wild-type mice fed a high fat diet. These and previous findings thus indicate that iPLA(2)beta-null mice exhibit phenotypic abnormalities in pancreatic islets in addition to testes and macrophages.  相似文献   

4.
Insulin secretion by pancreatic islet beta-cells is impaired in diabetes mellitus, and normal beta-cells are enriched in phospholipids with arachidonate as sn-2 substituent. Such molecules may play structural roles in exocytotic membrane fusion or serve as substrates for phospholipases activated by insulin secretagogues. INS-1 insulinoma cells respond to secretagogues and permit the study of effects of culture with free fatty acids on phospholipid composition and secretion. INS-1 cell glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) lipids are demonstrated here by electrospray ionization mass spectrometry to contain a lower fraction of molecules with arachidonate and a higher fraction with oleate as sn-2 substituent than native islets. Palmitic acid supplementation induces little change in these INS-1 cell lipids, but supplementation with linoleate or arachidonate induces a large rise in the fraction of INS-1 cell GPC species with polyunsaturated sn-2 substituents and a fall in oleate-containing species to yield a GPC profile similar to native islets. The fraction of GPE lipids comprised of plasmenylethanolamine species with polyunsaturated sn-2 substituents in early-passage INS-1 cells is similar to that of islets, but declines on serial passage. Such molecules might participate in exocytotic membrane fusion, and late-passage INS-1 cells have reduced insulin secretory responses. Arachidonate supplementation induces a rise in the fraction of INS-1 cell GPE lipids with polyunsaturated sn-2 substituents and partially restores responses to insulin secretagogues by late-passage INS-1 cells, but does not further amplify secretion by early-passage cells. Effects of extracellular free fatty acids on beta-cell phospholipid composition and secretory responses could be involved in changes in beta-cell function during the period of hyper-free fatty acidemia that precedes diabetes mellitus.  相似文献   

5.
Ramanadham S  Hsu FF  Zhang S  Jin C  Bohrer A  Song H  Bao S  Ma Z  Turk J 《Biochemistry》2004,43(4):918-930
The death of insulin-secreting beta-cells that causes type I diabetes mellitus (DM) occurs in part by apoptosis, and apoptosis also contributes to progressive beta-cell dysfunction in type II DM. Recent reports indicate that ER stress-induced apoptosis contributes to beta-cell loss in diabetes. Agents that deplete ER calcium levels induce beta-cell apoptosis by a process that is independent of increases in [Ca(2+)](i). Here we report that the SERCA inhibitor thapsigargin induces apoptosis in INS-1 insulinoma cells and that this is inhibited by a bromoenol lactone (BEL) inhibitor of group VIA calcium-independent phospholipase A(2) (iPLA(2)beta). Overexpression of iPLA(2)beta amplifies thapsigargin-induced apoptosis of INS-1 cells, and this is also suppressed by BEL. The magnitude of thapsigargin-induced INS-1 cell apoptosis correlates with the level of iPLA(2)beta expression in various cell lines, and apoptosis is associated with stimulation of iPLA(2)beta activity, perinuclear accumulation of iPLA(2)beta protein and activity, and caspase-3-catalyzed cleavage of full-length 84 kDa iPLA(2)beta to a 62 kDa product that associates with nuclei. Thapsigargin also induces ceramide accumulation in INS-1 cells, and this response is amplified in cells that overexpress iPLA(2)beta. These findings indicate that iPLA(2)beta participates in ER stress-induced apoptosis, a pathway that promotes beta-cell death in diabetes.  相似文献   

6.
7.
Lei X  Zhang S  Bohrer A  Bao S  Song H  Ramanadham S 《Biochemistry》2007,46(35):10170-10185
Beta-cell mass is regulated by a balance between beta-cell growth and beta-cell death, due to apoptosis. We previously reported that apoptosis of INS-1 insulinoma cells due to thapsigargin-induced ER stress was suppressed by inhibition of the group VIA Ca2+-independent phospholipase A2 (iPLA2beta), associated with an increased level of ceramide generation, and that the effects of ER stress were amplified in INS-1 cells in which iPLA2beta was overexpressed (OE INS-1 cells). These findings suggested that iPLA2beta and ceramides participate in ER stress-induced INS-1 cell apoptosis. Here, we address this possibility and also the source of the ceramides by examining the effects of ER stress in empty vector (V)-transfected and iPLA2beta-OE INS-1 cells using apoptosis assays and immunoblotting, quantitative PCR, and mass spectrometry analyses. ER stress induced expression of ER stress factors GRP78 and CHOP, cleavage of apoptotic factor PARP, and apoptosis in V and OE INS-1 cells. Accumulation of ceramide during ER stress was not associated with changes in mRNA levels of serine palmitoyltransferase (SPT), the rate-limiting enzyme in de novo synthesis of ceramides, but both message and protein levels of neutral sphingomyelinase (NSMase), which hydrolyzes sphingomyelins to generate ceramides, were temporally increased in the INS-1 cells. The increases in the level of NSMase expression in the ER-stressed INS-1 cells were associated with corresponding temporal elevations in ER-associated iPLA2beta protein and catalytic activity. Pretreatment with BEL inactivated iPLA2beta and prevented induction of NSMase message and protein in ER-stressed INS-1 cells. Relative to that in V INS-1 cells, the effects of ER stress were accelerated and/or amplified in the OE INS-1 cells. However, inhibition of iPLA2beta or NSMase (chemically or with siRNA) suppressed induction of NSMase message, ceramide generation, sphingomyelin hydrolysis, and apoptosis in both V and OE INS-1 cells during ER stress. In contrast, inhibition of SPT did not suppress ceramide generation or apoptosis in either V or OE INS-1 cells. These findings indicate that iPLA2beta activation participates in ER stress-induced INS-1 cell apoptosis by promoting ceramide generation via NSMase-catalyzed hydrolysis of sphingomyelins, raising the possibility that this pathway contributes to beta-cell apoptosis due to ER stress.  相似文献   

8.
Herein, we report the heterologous expression of the human peroxisomal 63-kDa calcium-independent phospholipase A2gamma (iPLA2gamma) isoform in Sf9 cells, purification of the N-terminal His-tagged enzyme by affinity chromatography, and the identification of its remarkable substrate selectivity that results in the highly selective generation of 2-arachidonoyl lysophosphatidylcholine. Mass spectrometric analyses demonstrated that purified iPLA2gamma hydrolyzed saturated or monounsaturated aliphatic groups readily from either the sn-1 or sn-2 positions of phospholipids. In addition, purified iPLA2gamma effectively liberated arachidonic acid from the sn-2 position of plasmenylcholine substrates. In contrast, incubation of iPLA2gamma with 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine resulted in the rapid release of palmitic acid and the selective accumulation of 2-arachidonoyl lysophosphatidylcholine (LPC), which was not metabolized further by iPLA2gamma. The putative regiospecificity of the 2-arachidonoyl LPC product was authenticated by its diagnostic fragmentation pattern during tandem mass spectrometric analysis. To identify the physiological relevance of iPLA2gamma-mediated 2-arachidonoyl LPC production utilizing naturally occurring membranes, we incubated purified rat hepatic peroxisomes with iPLA2gamma and similarly identified the selective accumulation of 2-arachidonoyl LPC. Furthermore, tandem mass spectrometric analysis demonstrated that 2-arachidonoyl LPC is a natural product in human myocardium, a tissue in which iPLA2gamma expression is robust. Because 2-arachidonoyl LPC represents a key branch point intermediate that can potentially lead to a variety of bioactive molecules in eicosanoid signaling (e.g. arachidonic acid, 2-arachidonoylglycerol), these results have uncovered a novel eicosanoid selective pathway through iPLA2gamma-mediated 2-arachidonoyl LPC production to amplify and diversify the repertoire of biologic lipid second messengers in response to cellular stimulation.  相似文献   

9.
Accumulating evidence suggests that the cytosolic calcium-independent phospholipase A(2) (iPLA(2)beta) manifests a signaling role in insulin-secreting (INS-1) beta-cells. Earlier, we reported that insulin-secretory responses to cAMP-elevating agents are amplified in iPLA(2)beta-overexpressing INS-1 cells (Ma Z, Ramanadham S, Bohrer A, Wohltmann M, Zhang S, and Turk J. J Biol Chem 276: 13198-13208, 2001). Here, immunofluorescence, immunoaffinity, and enzymatic activity analyses are used to examine distribution of iPLA(2)beta in stimulated INS-1 cells in greater detail. Overexpression of iPLA(2)beta in INS-1 cells leads to increased accumulation of iPLA(2)beta in the nuclear fraction. Increasing glucose concentrations alone results in modest increases in insulin secretion, relative to parental cells, and in nuclear accumulation of the iPLA(2)beta protein. In contrast, cAMP-elevating agents induce robust increases in insulin secretion and in time-dependent nuclear accumulation of iPLA(2)beta fluorescence, which is reflected by increases in nuclear iPLA(2)beta protein content and specific enzymatic activity. The stimulated effects are significantly attenuated in the presence of cell-permeable inhibitors of protein phosphorylation and glycosylation. These findings suggest that conditions that amplify insulin secretion promote translocation of beta-cell iPLA(2)beta to the nuclei, where it may serve a crucial signaling role.  相似文献   

10.
Glucose stimulates both insulin secretion and hydrolysis of arachidonic acid (AA) esterified in membrane phospholipids of pancreatic islet beta-cells, and these processes are amplified by muscarinic agonists. Here we demonstrate that nonesterified AA regulates the biophysical activity of the pancreatic islet beta-cell-delayed rectifier channel, Kv2.1. Recordings of Kv2.1 currents from INS-1 insulinoma cells incubated with AA (5 mum) and subjected to graded degrees of depolarization exhibit a significantly shorter time-to-peak current interval than do control cells. AA causes a rapid decay and reduced peak conductance of delayed rectifier currents from INS-1 cells and from primary beta-cells isolated from mouse, rat, and human pancreatic islets. Stimulating mouse islets with AA results in a significant increase in the frequency of glucose-induced [Ca(2+)] oscillations, which is an expected effect of Kv2.1 channel blockade. Stimulation with concentrations of glucose and carbachol that accelerate hydrolysis of endogenous AA from islet phosphoplipids also results in accelerated Kv2.1 inactivation and a shorter time-to-peak current interval. Group VIA phospholipase A(2) (iPLA(2)beta) hydrolyzes beta-cell membrane phospholipids to release nonesterified fatty acids, including AA, and inhibiting iPLA(2)beta prevents the muscarinic agonist-induced accelerated Kv2.1 inactivation. Furthermore, glucose and carbachol do not significantly affect Kv2.1 inactivation in beta-cells from iPLA(2)beta(-/-) mice. Stably transfected INS-1 cells that overexpress iPLA(2)beta hydrolyze phospholipids more rapidly than control INS-1 cells and also exhibit an increase in the inactivation rate of the delayed rectifier currents. These results suggest that Kv2.1 currents could be dynamically modulated in the pancreatic islet beta-cell by phospholipase-catalyzed hydrolysis of membrane phospholipids to yield non-esterified fatty acids, such as AA, that facilitate Ca(2+) entry and insulin secretion.  相似文献   

11.
Insulin-secreting pancreatic islet beta-cells express a Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) that contains a calmodulin binding site and protein interaction domains. We identified Ca(2+)/calmodulin-dependent protein kinase IIbeta (CaMKIIbeta) as a potential iPLA(2)beta-interacting protein by yeast two-hybrid screening of a cDNA library using iPLA(2)beta cDNA as bait. Cloning CaMKIIbeta cDNA from a rat islet library revealed that one dominant CaMKIIbeta isoform mRNA is expressed by adult islets and is not observed in brain or neonatal islets and that there is high conservation of the isoform expressed by rat and human beta-cells. Binary two-hybrid assays using DNA encoding this isoform as bait and iPLA(2)beta DNA as prey confirmed interaction of the enzymes, as did assays with CaMKIIbeta as prey and iPLA(2)beta bait. His-tagged CaMKIIbeta immobilized on metal affinity matrices bound iPLA(2)beta, and this did not require exogenous calmodulin and was not prevented by a calmodulin antagonist or the Ca(2+) chelator EGTA. Activities of both enzymes increased upon their association, and iPLA(2)beta reaction products reduced CaMKIIbeta activity. Both the iPLA(2)beta inhibitor bromoenol lactone and the CaMKIIbeta inhibitor KN93 reduced arachidonate release from INS-1 insulinoma cells, and both inhibit insulin secretion. CaMKIIbeta and iPLA(2)beta can be coimmunoprecipitated from INS-1 cells, and forskolin, which amplifies glucose-induced insulin secretion, increases the abundance of the immunoprecipitatable complex. These findings suggest that iPLA(2)beta and CaMKIIbeta form a signaling complex in beta-cells, consistent with reports that both enzymes participate in insulin secretion and that their expression is coinduced upon differentiation of pancreatic progenitor to endocrine progenitor cells.  相似文献   

12.
Upon differentiation, U937 promonocytic cells gain the ability to release a large fraction of arachidonate esterified in phospholipids when stimulated, but the mechanism is unclear. U937 cells express group IV phospholipase A(2) (cPLA(2)), but neither its level nor its phosphorylation state increases upon differentiation. A group VI PLA(2) (iPLA(2)) that is sensitive to a bromoenol lactone inhibitor catalyzes arachidonate hydrolysis from phospholipids in some cells and facilitates arachidonate incorporation into glycerophosphocholine (GPC) lipids in others, but it is not known whether U937 cells express iPLA(2). We confirm that ionophore A23187 induces substantial [(3)H]arachidonate release from differentiated but not control U937 cells, and electrospray ionization mass spectrometric (ESI/MS) analyses indicate that differentiated cells contain a higher proportion of arachidonate-containing GPC species than control cells. U937 cells express iPLA(2) mRNA and activity, but iPLA(2) inhibition impairs neither [(3)H]arachidonate incorporation into nor release from U937 cells. Experiments with phosphatidate phosphohydrolase (PAPH) and phospholipase D (PLD) inhibitors coupled with ESI/MS analyses of PLD-PAPH products indicate that differentiated cells gain the ability to produce diacylglycerol (DAG) via PLD-PAPH. DAG promotes arachidonate release by a mechanism that does not require DAG hydrolysis, is largely independent of protein kinase C, and requires cPLA(2) activity. This may reflect DAG effects on cPLA(2) substrate state.  相似文献   

13.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

14.
Oxidation of 1-O-hexadec-1'-enyl-arachidonoyl glycerophosphocholine (16:0p/20:4-GPC) by hydroxyl radical generated from Cu(II)/H(2)O(2) was found to yield major products corresponding to free carboxylic acids of 5-hydroxyeicosatetraenoic acid and several 5, 12-dihydroxyeicosatetraenoic acid. These products were characterized by electrospray tandem mass spectrometry based upon characteristic product ion spectra, as well as HPLC retention time. Several products were found to be biologically active in terms of elevating neutrophil intracellular calcium ion concentration. When mixed micelles of 16:0p/20:4-GPC were treated with Cu(II)/H(2)O(2), oxidation of the arachidonate esterified to the plasmalogen glycerophosphocholine lipid resulted in the most abundant products oxidized at carbon-5 of esterified arachidonate, but free carboxylic acid products were not formed. The mechanism of formation of these oxidized products is suggested to involve a cooperation between the sn-1 vinyl ether substituent and the arachidonoyl substituent at sn-2 of the glycerophospholipid to direct oxidation of the arachidonate ester at carbon-5. Since arachidonic acid is found in high abundance within most plasmalogen glycerophospholipids, the susceptibility of plasmalogens to free radical oxidation likely involves concomitant oxidation of the arachidonyl radyl group esterified at the sn-2 position.  相似文献   

15.
Studies with genetically modified insulinoma cells suggest that group VIA phospholipase A(2) (iPLA(2)beta) participates in amplifying glucose-induced insulin secretion. INS-1 insulinoma cells that overexpress iPLA(2)beta, for example, exhibit amplified insulin-secretory responses to glucose and cAMP-elevating agents. To determine whether similar effects occur in whole animals, we prepared transgenic (TG) mice in which the rat insulin 1 promoter (RIP) drives iPLA(2)beta overexpression, and two characterized TG mouse lines exhibit similar phenotypes. Their pancreatic islet iPLA(2)beta expression is increased severalfold, as reflected by quantitative PCR of iPLA(2)beta mRNA, immunoblotting of iPLA(2)beta protein, and iPLA(2)beta enzymatic activity. Immunofluorescence microscopic studies of pancreatic sections confirm iPLA(2)beta overexpression in RIP-iPLA(2)beta-TG islet beta-cells without obviously perturbed islet morphology. Male RIP-iPLA(2)beta-TG mice exhibit lower blood glucose and higher plasma insulin concentrations than wild-type (WT) mice when fasting and develop lower blood glucose levels in glucose tolerance tests, but WT and TG blood glucose levels do not differ in insulin tolerance tests. Islets from male RIP-iPLA(2)beta-TG mice exhibit greater amplification of glucose-induced insulin secretion by a cAMP-elevating agent than WT islets. In contrast, islets from male iPLA(2)beta-null mice exhibit blunted insulin secretion, and those mice have impaired glucose tolerance. Arachidonate incorporation into and the phospholipid composition of RIP-iPLA(2)beta-TG islets are normal, but they exhibit reduced Kv2.1 delayed rectifier current and prolonged glucose-induced action potentials and elevations of cytosolic Ca(2+) concentration that suggest a molecular mechanism for the physiological role of iPLA(2)beta to amplify insulin secretion.  相似文献   

16.
Many cells express a Group VIA phospholipase A2, designated iPLA2beta, that does not require calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone suicide substrate (BEL). Studies in various cell systems have led to the suggestion that iPLA2beta has a role in phospholipid remodeling, signal transduction, cell proliferation, and apoptosis. We have found that pancreatic islets, beta-cells, and glucose-responsive insulinoma cells express an iPLA2beta that participates in glucose-stimulated insulin secretion but is not involved in membrane phospholipid remodeling. Additionally, recent studies reveal that iPLA2beta is involved in pathways that contribute to beta-cell proliferation and apoptosis, and that various phospholipid-derived mediators are involved in these processes. Detailed characterization of the enzyme suggests that the beta-cells express multiple isoforms of iPLA2beta, and we hypothesize that these participate in different cellular functions.  相似文献   

17.
Endoplasmic reticulum (ER) stress induces INS-1 cell apoptosis by a pathway involving Ca(2+)-independent phospholipase A(2) (iPLA(2)beta)-mediated ceramide generation, but the mechanism by which iPLA(2)beta and ceramides contribute to apoptosis is not well understood. We report here that both caspase-12 and caspase-3 are activated in INS-1 cells following induction of ER stress with thapsigargin, but only caspase-3 cleavage is amplified in iPLA(2)beta overexpressing INS-1 cells (OE), relative to empty vector-transfected cells, and is suppressed by iPLA(2)beta inhibition. ER stress also led to the release of cytochrome c and Smac and, unexpectedly, their accumulation in the cytosol is amplified in OE cells. These findings raise the likelihood that iPLA(2)beta participates in ER stress-induced apoptosis by activating the intrinsic apoptotic pathway. Consistent with this possibility, we find that ER stress promotes iPLA(2)beta accumulation in the mitochondria, opening of mitochondrial permeability transition pore, and loss in mitochondrial membrane potential (Delta Psi) in INS-1 cells and that these changes are amplified in OE cells. ER stress also led to greater ceramide generation in ER and mitochondria fractions of OE cells. Exposure to ceramide alone induces loss in Delta Psi and apoptosis and these are suppressed by forskolin. ER stress-induced mitochondrial dysfunction and apoptosis are also inhibited by forskolin, as well as by inactivation of iPLA(2)beta or NSMase, suggesting that iPLA(2)beta-mediated generation of ceramides via sphingomyelin hydrolysis during ER stress affect the mitochondria. In support, inhibition of iPLA(2)beta or NSMase prevents cytochrome c release. Collectively, our findings indicate that the iPLA(2)beta-ceramide axis plays a critical role in activating the mitochondrial apoptotic pathway in insulin-secreting cells during ER stress.  相似文献   

18.
19.
Schwartze W  Roos W 《Planta》2008,229(1):183-191
In cultured cells of California poppy (Eschscholzia californica), lysophosphatidylcholine (LPC) triggers a signal path that finally induces alkaloid biosynthesis. LPC is transiently generated by elicitor-activated phospholipase A(2) of the plasma membrane. Externally added LPC is rapidly acylated by a membrane-bound enzyme that shows the highest specific activity in the purified plasma membrane. The fatty acid incorporated into the sn-2 position of LPC is preferentially linoleic (18:2), which is the most abundant acyl component in the PC species of Eschscholzia cells, but a minor component of the pool of free fatty acids. The fatty acid at the sn-1 position of LPC is less important for substrate specificity. The capacity of LPC acylation by intact cells or isolated plasma membranes by far exceeds the rate of LPC generation by activated phospholipase A(2) and is not limited by the availability of acyl donors. Metabolites other than phosphatidylcholine (PC) were not significantly produced from labeled LPC within 20 min, indicating that lysophospholipases are not significantly contributing to the short-time metabolism of LPC. It is concluded that reacylation to PC is the dominating process in the detoxication of LPC and ensures the transient character of its steady state concentrations, even at maximum phospholipase A(2) activities.  相似文献   

20.
The remodeling of the fatty acyl moieties of phosphatidylcholine (PC) has been studied in choline-deficient and choline-supplemented hepatocytes prepared from a choline-deficient rat. Choline-deficient hepatocytes were prelabeled with [Me-3H]choline for 30 min and subsequently incubated for up to 12 h in the presence or absence of choline. Analysis of the molecular species of PC from choline-deficient cells showed that, at the end of the pulse, approx. 75% of the label was incorporated into palmitate-containing species and only approx. 16% of the labeled species contained stearate. During the chase period there was a redistribution of label and after 12 h approx. 56% of the total radioactivity was associated with palmitate containing species and 37% was recovered in stearate-containing species. A similar distribution of radioactivity was observed in choline-supplemented cells. Measurement of the specific radioactivity of the major molecular species of PC was consistent with a precursor-product relationship between palmitate-containing species and stearate-containing species with arachidonate or linoleate on the sn-2 position. A model is presented which takes into account remodeling of both the sn-1 and sn-2 positions of PC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号