首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The methyltransferase RlmA(II) (formerly TlrB) is found in many Gram-positive bacteria, and methylates the N-1 position of nucleotide G748 within the loop of hairpin 35 in 23S rRNA. Methylation of the rRNA by RlmA(II) confers resistance to tylosin and other mycinosylated 16-membered ring macrolide antibiotics. We have previously solved the solution structure of hairpin 35 in the conformation that is recognized by the RlmA(II) methyltransferase from Streptococcus pneumoniae. It was shown that while essential recognition elements are located in hairpin 35, the interactions between RlmA(II) and hairpin 35 are insufficient on their own to support the methylation reaction. Here we use biochemical techniques in conjunction with heteronuclear/homonuclear nuclear magnetic resonance spectroscopy to define the RNA structures that are required for efficient methylation by RlmA(II). Progressive truncation of the rRNA substrate indicated that multiple contacts occur between RlmA(II) and nucleotides in stem-loops 33, 34 and 35. RlmA(II) appears to recognize its rRNA target through specific surface shape complementarity at the junction formed by these three helices. This means of recognition is highly similar to that of the orthologous Gram-negative methyltransferase, RlmA(I) (formerly RrmA), which also interacts with hairpin 35, but methylates at the adjacent nucleotide G745.  相似文献   

2.
tlrB is one of four resistance genes encoded in the operon for biosynthesis of the macrolide tylosin in antibiotic-producing strains of Streptomyces fradiae. Introduction of tlrB into Streptomyces lividans similarly confers tylosin resistance. Biochemical analysis of the rRNA from the two Streptomyces species indicates that in vivo TlrB modifies nucleotide G748 within helix 35 of 23S rRNA. Purified recombinant TlrB retains its activity and specificity in vitro and modifies G748 in 23S rRNA as well as in a 74 nucleotide RNA containing helix 35 and surrounding structures. Modification is dependent on the presence of the methyl group donor, S-adenosyl methionine. Analysis of the 74-mer RNA substrate by biochemical and mass spectrometric methods shows that TlrB adds a single methyl group to the base of G748. Homologues of TlrB in other bacteria have been revealed through database searches, indicating that TlrB is the first member to be described in a new subclass of rRNA methyltransferases that are implicated in macrolide drug resistance.  相似文献   

3.
Macrolide antibiotic resistance is widespread among Brachyspira hyodysenteriae (formerly Serpulina hyodysenteriae) isolates. The genetic basis of macrolide and lincosamide resistance in B. hyodysenteriae was elucidated. Resistance to tylosin, erythromycin and clindamycin in B. hyodysenteriae was associated with an A-->T transversion mutation in the nucleotide position homologous with position 2058 of the Escherichia coli 23S rRNA gene. The nucleotide sequences of the peptidyl transferase region of the 23S rDNA from seven macrolide and lincosamide resistant and seven susceptible strains of Brachyspira spp. were determined. None of the susceptible strains were mutated whereas all the resistant strains had a mutation in position 2058. Susceptible strains became resistant in vitro after subculturing on agar containing 4 micrograms ml-1 of tylosin. Sequencing of these strains revealed an A-->G transition mutation in position 2058.  相似文献   

4.
Bacteria tune the function of their ribosomes by methylating specific rRNA nucleotides. Nucleotide G745 in Escherichia coli 23S rRNA is methylated by the methyltransferase enzyme RrmA, whereas in Streptomyces fradiae, the neighbouring nucleotide G748 is methylated by the enzyme TlrB. Both nucleotides line the peptide exit channel of the ribosome at the binding site of macrolide, lincosamide and streptogramin B antibiotics. Resistance to the macrolide tylosin, which is produced by S. fradiae, is conferred by methylation of G748. RrmA and TlrB are homologues (29% identical), and a database search against all presently available sequences revealed a further two dozen homologues from a wide variety of Bacteria. No homologues were found among the Archaea or Eukarya. The bacterial sequences adhere to the species phylogeny and segregate into two groups, in which the Gram-negative sequences align with RrmA and the Gram-positives with TlrB. Consistently, in more than 20 species tested, the distribution of methylation in the Gram-negative rRNAs (methylated at G745) and the Gram-positives (methylated at G748) perfectly matches the bacterial phylogeny. Cloning and expression of representative methyltransferase genes showed that this specificity of methylation is determined solely by the methyltransferase enzyme and is independent of the origin of the rRNA substrate. This is the first case in which the position of an RNA methylation defines a sharp division between the Gram-negative and Gram-positive bacteria. Given the specificities and distribution of these methyltransferases, we propose a change in the nomenclature of RrmA to RlmAI (rRNA large subunit methyltransferase) and of TlrB to RlmAII.  相似文献   

5.
Atul R. Gandecha  Eric Cundliffe   《Gene》1996,180(1-2):173-176
The macrolide antibiotic, tylosin (Ty), is produced by Streptomyces fradiae. Two resistance determinants (tlrA, synonym ermSF, and tlrD) conferring resistance to macrolide, lincosamide and streptogramin B type (MLS) antibiotics were previously isolated from this strain, and their products shown to methylate 23S ribosomal RNA (rRNA) at a common site, thereby rendering the ribosomes MLS resistant. However, the T1rA and T1rD proteins differ in their action; the former dimethylates, and the latter monomethylates, the target nucleotide. Here, 2.2 kb of DNA from the tylLM region of the tylosin biosynthetic gene cluster of S. fradiae has been sequenced and shown to encompass tlrD. Comparison of the sequences of tlrA and tlrD (and of their deduced products) with those of related (‘erm-type’) genes from other actinomycetes suggests that the combined presence of tlrA and tlrD in S. fradiae is not the result of recent gene duplication.  相似文献   

6.
Coresistance to macrolide, lincosamide, and streptogramin B-type (MLS) antibiotics by a common biochemical mechanism characterizes clinically resistant pathogens. Of 10 streptomycetes tested for resistance to macrolide, lincosamide, and streptogramin B-type antibiotics, only 1, Streptomyces erythreus, the organism used for production of erythromycin, was found resistant to all three classes; moreover, it was the only streptomycete in the series tested found to contain N6-dimethyladenine (m62A) in 23S ribosomal ribonucleic acid, the structural alteration of ribosomal ribonucleic acid associated with clinical resistance. Of the seven streptomycetes tested for the presence of m62A and N6-methyladenine (m6A), two, S. fradiae and S. cirratus, which produce the macrolide antibiotics tylosin and cirramycin, respectively, were found to contain m6A, but not m62A. The remaining strains tested, including strains which produce lincomycin and streptogramins, contained neither m6A nor m62A.  相似文献   

7.
Several groups of Gram-negative bacteria possess an RlmA(I) methyltransferase that methylates 23S rRNA nucleotide G745 at the N1 position. Inactivation of rlmA(I) in Acinetobacter calcoaceticus and Escherichia coli reduces growth rates by at least 30%, supposedly due to ribosome malfunction. Wild-type phenotypes are restored by introduction of plasmid-encoded rlmA(I), but not by the orthologous Gram-positive gene rlmA(II) that methylates the neighboring nucleotide G748. Nucleotide G745 interacts with A752 in a manner that does not involve the guanine N1 position. When a cytosine is substituted at A752, a Watson-Crick G745-C752 pair is formed occluding the guanine N1 and greatly reducing RlmA(I) methylation. Methylation is completely abolished by substitution of the G745 base. Intriguingly, the absence of methylation in E. coli rRNA mutant strains causes no reduction in growth rate. Furthermore, the slow-growing rlmA(I) knockout strains of Acinetobacter and E. coli revert to the wild-type growth phenotype after serial passages on agar plates. All the cells tested were pseudorevertants, and none of them had recovered G745 methylation. Analyses of the pseudorevertants failed to reveal second-site mutations in the ribosomal components close to nucleotide G745. The results indicate that cell growth is not dependent on G745 methylation, and that the RlmA(I) methyltransferase therefore has another (as yet unidentified) primary function.  相似文献   

8.
Erythromycin, tylosin and tilmicosin are approved for use in cattle in Japan, the latter two being used to treat Mycoplasma bovis infection. In this study, 58 M. bovis isolates obtained from Japanese dairy calves all exhibited reduced susceptibility to these macrolides, this widespread reduced susceptibility being attributable to a few dominant lineages. All 58 isolates contained the G748A variant in both the rrl3 and rrl4 alleles of 23S rRNA, whereas a reference strain (PG45) did not. G748 localizes in the central loop of domain II (from C744 to A753) of 23S rRNA, which participates in binding to mycinose, a sugar residue present in both tylosin and tilmicosin. A number of in vitro‐ selected mutants derived from M. bovis PG45 showed reduced susceptibility to tylosin and tilmicosin and contained a nucleotide insertion within the central loop of domain II of rrl3 (U747–G748Ins_CU/GU or A743–U744Ins_UA), suggesting that mutations around G748 confer this reduced susceptibility phenotype. However, other Mycoplasma species containing G748A were susceptible to tylosin and tilmicosin. Sequence comparison with Escherichia coli revealed that M. bovis PG45 and isolates harbored five nucleotide alterations (U744C, G745A, U746C, A752C and A753G) in the central loop of domain II of 23S rRNA, whereas other Mycoplasma species lacked at least two of these five nucleotide alterations. It was therefore concluded that G748 mutations in combination with species‐specific nucleotide alterations in the central loop of domain II of 23S rRNA are likely sufficient to reduce susceptibility of M. bovis to tylosin and tilmicosin.
  相似文献   

9.
The macrolide antibiotic erythromycin interacts with bacterial 23S ribosomal RNA (rRNA) making contacts that are limited to hairpin 35 in domain II of the rRNA and to the peptidyl transferase loop in domain V. These two regions are probably folded close together in the 23S rRNA tertiary structure and form a binding pocket for macrolides and other drug types. Erythromycin has been derivatized by replacing the L-cladinose moiety at position 3 by a keto group (forming the ketolide antibiotics) and by an alkyl-aryl extension at positions 11/12 of the lactone ring. All the drugs footprint identically within the peptidyl transferase loop, giving protection against chemical modification at A2058, A2059 and G2505, and enhancing the accessibility of A2062. However, the ketolide derivatives bind to ribosomes with widely varying affinities compared with erythromycin. This variation correlates with differences in the hairpin 35 footprints. Erythromycin enhances the modification at position A752. Removal of cladinose lowers drug binding 70-fold, with concomitant loss of the A752 footprint. However, the 11/12 extension strengthens binding 10-fold, and position A752 becomes protected. These findings indicate how drug derivatization can improve the inhibition of bacteria that have macrolide resistance conferred by changes in the peptidyl transferase loop.  相似文献   

10.
Members of the Mycobacterium tuberculosis complex possess a resistance determinant, erm(37) (also termed ermMT), which is a truncated homologue of the erm genes found in a diverse range of drug-producing and pathogenic bacteria. All erm genes examined thus far encode N(6)-monomethyltransferases or N(6),N(6)-dimethyltransferases that show absolute specificity for nucleotide A2058 in 23 S rRNA. Monomethylation at A2058 confers resistance to a subset of the macrolide, lincosamide, and streptogramin B (MLS(B)) group of antibiotics and no resistance to the latest macrolide derivatives, the ketolides. Dimethylation at A2058 confers high resistance to all MLS(B) and ketolide drugs. The erm(37) phenotype fits into neither category. We show here by tandem mass spectrometry that Erm(37) initially adds a single methyl group to its primary target at A2058 but then proceeds to attach additional methyl groups to the neighboring nucleotides A2057 and A2059. Other methyltransferases, Erm(E) and Erm(O), maintain their specificity for A2058 on mycobacterial rRNA. Erm(E) and Erm(O) have a full-length C-terminal domain, which appears to be important for stabilizing the methyltransferases at their rRNA target, and this domain is truncated in Erm(37). The lax interaction of the M. tuberculosis Erm(37) with its rRNA produces a unique methylation pattern and confers resistance to the ketolide telithromycin.  相似文献   

11.
RlmAII methylates the N1-position of nucleotide G748 in hairpin 35 of 23 S rRNA. The resultant methyl group extends into the peptide channel of the 50 S ribosomal subunit and confers resistance to tylosin and other mycinosylated macrolide antibiotics. Methylation at G748 occurs in several groups of Gram-positive bacteria, including the tylosin-producer Streptomyces fradiae and the pathogen Streptococcus pneumoniae. Recombinant S. pneumoniae RlmAII was purified and shown to retain its activity and specificity in vitro when tested on unmethylated 23 S rRNA substrates. RlmAII makes multiple footprint contacts with nucleotides in stem-loops 33, 34 and 35, and does not interact elsewhere in the rRNA. Binding of RlmAII to the rRNA is dependent on the cofactor S-adenosylmethionine (or S-adenosylhomocysteine). RlmAII interacts with the same rRNA region as the orthologous enzyme RlmAI that methylates at nucleotide G745. Differences in nucleotide contacts within hairpin 35 indicate how the two methyltransferases recognize their distinct targets.  相似文献   

12.
The veterinary antibiotic tildipirosin (20,23-dipiperidinyl-mycaminosyl-tylonolide, Zuprevo) was developed recently to treat bovine and swine respiratory tract infections caused by bacterial pathogens such as Pasteurella multocida. Tildipirosin is a derivative of the naturally occurring compound tylosin. Here, we define drug-target interactions by combining chemical footprinting with structure modeling and show that tildipirosin, tylosin, and an earlier tylosin derivative, tilmicosin (20-dimethylpiperidinyl-mycaminosyl-tylonolide, Micotil), bind to the same macrolide site within the large subunit of P. multocida and Escherichia coli ribosomes. The drugs nevertheless differ in how they occupy this site. Interactions of the two piperidine components, which are unique to tildipirosin, distinguish this drug from tylosin and tilmicosin. The 23-piperidine of tildipirosin contacts ribosomal residues on the tunnel wall while its 20-piperidine is oriented into the tunnel lumen and is positioned to interfere with the growing nascent peptide.  相似文献   

13.
A plasmid, pE194, obtained from Staphylococcus aureus confers resistance to macrolide, lincosamide, and streptogramin type B ("MLS") antibiotics. For full expression, the resistance phenotype requires a period of induction by subinhibitory concentrations of erythromycin. A copy number in the range of 10 to 25 copies per cell is maintained during cultivation at 32 degrees C. It is possible to transfer pE194 to Bacillus subtilis by transformation. In B. subtilis, the plasmid is maintained at a copy number of approximately 10 per cell at 37 degrees C, and resistance is inducible. Tylosin, a macrolide antibiotic which resembles erythromycin structurally and to which erythromycin induces resistance, lacks inducing activity. Two types of plasmid mutants were obtained and characterized after selection on medium containing 10 microgram of tylosin per ml. One mutant class appeared to express resistance constitutively and maintained a copy number indistinguishable from that of the parent plasmid. The other mutant type had a 5- to 10-fold-elevated plasmid copy number (i.e., 50 to 100 copies per cell) and expressed resistance inducibly. Both classes of tylosin-resistant mutants were shown to be due to alterations in the plasmid and not to modifications of the host genome.  相似文献   

14.
The vacuolar H+-ATPase is inhibited with high specificity and potency by bafilomycin and concanamycin, macrolide antibiotics with similar structures. We previously reported that mutation at three residues in subunit c of the vacuolar ATPase from Neurospora crassa conferred strong resistance to bafilomycin but little or no resistance to concanamycin (Bowman, B. J., and Bowman, E. J. (2002) J. Biol. Chem. 277, 3965-3972). We have identified additional mutated sites in subunit c that confer resistance to bafilomycin. Furthermore, by subjecting a resistant mutant to a second round of mutation we isolated strains with increased resistance to both bafilomycin and concanamycin. In all of these strains the second mutation is also in subunit c, suggesting it forms at least part of the concanamycin binding site. Site-directed mutagenesis of the gene encoding subunit c in Saccharomyces cerevisiae showed that single mutations in each of the residues identified in one of the double mutants of N. crassa conferred resistance to both bafilomycin and concanamycin. Mutations at the corresponding sites in the VMA11 and VMA16 genes of S. cerevisiae, which encode the c' and c" subunits, did not confer resistance to the drugs. In all, nine residues of subunit c have been implicated in drug binding. The positions of these residues support a model in which the drug binding site is a pocket formed by helices 1, 2, and 4. We hypothesize that the drugs inhibit by preventing the rotation of the c subunits.  相似文献   

15.
We have used chemical modification to examine the conformation of 23 S rRNA in Escherichia coli ribosomes bearing erythromycin resistance mutations in ribosomal proteins L22 and L4. Changes in reactivity to chemical probes were observed at several nucleotide positions scattered throughout 23 S rRNA. The L4 mutation affects the reactivity of G799 and U1255 in domain II and that of A2572 in domain V. The L22 mutation influences modification in domain II at positions m5U747, G748, and A1268, as well as at A1614 in domain III and G2351 in domain V. The reactivity of A789 is weakly enhanced by both the L22 and L4 mutations. None of these nucleotide positions has previously been associated with macrolide antibiotic resistance. Interestingly, neither of the ribosomal protein mutations produces any detectable effects at or within the vicinity of A2058 in domain V, the site most frequently shown to confer macrolide resistance when altered by methylation or mutation. Thus, while L22 and L4 bind primarily to domain I of 23 S rRNA, erythromycin resistance mutations in these ribosomal proteins perturb the conformation of residues in domains II, III and V and affect the action of antibiotics known to interact with nucleotide residues in the peptidyl transferase center of domain V. These results support the hypothesis that ribosomal proteins interact with rRNA at multiple sites to establish its functionally active three-dimensional structure, and suggest that these antibiotic resistance mutations act by perturbing the conformation of rRNA.  相似文献   

16.
Many antibiotics, including the macrolides, inhibit protein synthesis by binding to ribosomes. Only some of the macrolides affect the peptidyl transferase reaction. The 16-member ring macrolide antibiotics carbomycin, spiramycin, and tylosin inhibit peptidyl transferase. All these have a disaccharide at position 5 in the lactone ring with a mycarose moiety. We have investigated the functional role of this mycarose moiety. The 14-member ring macrolide erythromycin and the 16-member ring macrolides desmycosin and chalcomycin do not inhibit the peptidyl transferase reaction. These drugs have a monosaccharide at position 5 in the lactone ring. The presence of mycarose was correlated with inhibition of peptidyl transferase, footprints on 23 S rRNA and whether the macrolide can compete with binding of hygromycin A to the ribosome. The binding sites of the macrolides to Escherichia coli ribosomes were investigated by chemical probing of domains II and V of 23 S rRNA. The common binding site is around position A2058, while effects on U2506 depend on the presence of the mycarose sugar. Also, protection at position A752 indicates that a mycinose moiety at position 14 in 16-member ring macrolides interact with hairpin 35 in domain II. Competitive footprinting of ribosomal binding of hygromycin A and macrolides showed that tylosin and spiramycin reduce the hygromycin A protections of nucleotides in 23 S rRNA and that carbomycin abolishes its binding. In contrast, the macrolides that do not inhibit the peptidyl transferase reaction bind to the ribosomes concurrently with hygromycin A. Data are presented to argue that a disaccharide at position 5 in the lactone ring of macrolides is essential for inhibition of peptide bond formation and that the mycarose moiety is placed near the conserved U2506 in the central loop region of domain V 23 S rRNA.  相似文献   

17.
Streptomyces ambofaciens produces spiramycin, a macrolide antibiotic and expresses an inducible resistance to macrolides, lincosamides and streptogramin B antibiotics (MLS). From a mutant of S.ambofaciens exhibiting a constitutive MLS resistance phenotype a resistance determinant was cloned on a low copy number vector (pIJ61) through its expression in Streptomyces lividans. Further characterization has shown that this determinant corresponded to a mutant rRNA operon with a mutation in the 23S rRNA gene. In different organisms, mutations leading to MLS resistance have been located at a position corresponding to the adenine 2058 of Escherichia coli 23S rRNA. In the 23S rRNA from S.ambofaciens a similar position for the mutation has been postulated and DNA sequencing of this region has shown an adenine to guanine transition at a position corresponding to 2058. S.ambofaciens possesses four rRNA operons which we have cloned. In Streptomyces, contrary to other bacteria, a mutation in one among several rRNA operons confers a selectable MLS resistance phenotype. Possible reasons for this difference are discussed.  相似文献   

18.
In this study, 100 clinical isolates of Streptococcus agalactiae recovered from genitourinary tract specimens of non-pregnant individuals living in Rio de Janeiro were submitted for antimicrobial susceptibility testing, detection of macrolide resistance genes and evaluation of the genetic diversity of erythromycin-resistant isolates. By agar diffusion method, all isolates were susceptible to ceftazidime, penicillin and vancomycin. Isolates were resistant to levofloxacin (1%), clindamycin (5%), erythromycin (11%) and tetracycline (83%) and were intermediated to erythromycin (4%) and tetracycline (6%). Erythromycin-resistant and intermediated isolates presented the following phenotypes: M (n = 3), constitutive macrolide-lincosamide-streptogramin B (MLS B, n = 5) and inductive MLS B (n = 7). Determinants of macrolide resistance genes, erm and mef, were detected in isolates presenting MLS B and M phenotypes, respectively. Randomly amplified polymorphic DNA profiles of erythromycin-resistant isolates were clustered into two major groups of similarity.  相似文献   

19.
Copy-number mutants of Staphylococcus aureus macrolide-lincosamide-streptogramin B (MLS) resistance plasmid pT48 were isolated by their resistance to the non-inducing macrolide, tylosin. One mutant plasmid, pcopD3, showed a three- to five-fold cis-dominant increase in copy number, and nucleotide sequence analysis revealed that the mutant had a single base change within the replication region. All other pT48 mutants examined had the unusual phenotype of increased plasmid multimerization and elevated copy number. These mutants were effective in trans and DNA sequencing showed that plasmids with this phenotype were deleted in one of two ways. The deletions caused similar alterations to the C-terminus of the wild-type pT48 Rep protein. The two types of mutant Rep proteins terminate with the same pentapeptide sequence: Ala-Asn-Glu-Ile-Asp. The multimerization phenotype of these mutants can be explained by defective termination of rolling-circle type replication.  相似文献   

20.
Summary A gene conferring high-level resistance to tylosin in Streptomyces lividans and Streptomyces griseofuscus was cloned from a tylosin-producing strain of Streptomyces fradiae. The tylosin-resistance (Tylr) gene (tlrA) was isolated on five overlapping DNA fragments which contained a common 2.6 Kb KpnI fragment. The KpnI fragment contained all of the information required for the expression of the Tylr phenotype in S. lividans and S. griseofuscus. Southern hybridization indicated that the sequence conferring tylosin resistance was present on the same 5 kb SalI fragment in genomic DNA from S. fradiae and several tylosin-sensitive (Tyls) mutants. The cloned tlrA gene failed to restore tylosin resistance in two Tyls mutants derived by protoplast formation and regeneration, and it restored partial resistance in a Tyls mutant obtained by N-methyl-N-nitro-N-nitrosoguanidine (MNNG) mutagenesis. The tlrA gene conferred resistance to tylosin, carbomycin, niddamycin, vernamycin-B and, to some degree, lincomycin in S. griseofuscus, but it had no effect on sensitivity to streptomycin or spectinomycin, suggesting that the cloned gene is an MLS (macrolide, lincosamide, streptogramin-B)-resistance gene. Twenty-eight kb of S. fradiae DNA surrounding the tlrA gene was isolated from a genomic library in bacteriophage Charon 4. Introduction of these DNA sequence into S. fradiae mutants blocked at different steps in tylosin biosynthesis failed to restore tylosin production, suggesting that the cloned Tylr gene is not closely linked to tylosin biosynthetic genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号