首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to determine whether capillarity in the denervated and reinnervated rat extensor digitorum longus muscle (EDL) is scaled by muscle fiber oxidative potential. We visualized capillaries adjacent to a metabolically defined fiber type and estimated capillarity of fibers with very high oxidative potential (O) vs fibers with very low oxidative potential (G). Capillaries and muscle fiber types were shown by a combined triple immunofluorescent technique and the histochemical method for NADH-tetrazolium reductase. Stacks of images were captured by a confocal microscope. Applying the Ellipse program, fibers were outlined, and the diameter, perimeter, cross-sectional area, length, surface area, and volume within the stack were calculated for both fiber types. Using the Tracer plug-in module, capillaries were traced within the three-dimensional (3D) volume, the length of capillaries adjacent to individual muscle fibers was measured, and the capillary length per fiber length (Lcap/Lfib), surface area (Lcap/Sfib), and volume (Lcap/Vfib) were calculated. Furthermore, capillaries and fibers of both types were visualized in 3D. In all experimental groups, O and G fibers significantly differed in girth, Lcap/Sfib, and Lcap/Vfib, but not in Lcap/Lfib. We conclude that capillarity in the EDL is scaled by muscle fiber size and not by muscle fiber oxidative potential. (J Histochem Cytochem 57:437–447, 2009)  相似文献   

2.
The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed. This study was supported by the Slovenian Research Agency and the Ministry of Education, Youth and Sport of the Czech Republic (KONTAKT grant no. 19/2005).  相似文献   

3.
In this review we present immunohistochemical methods for visualization of capillaries and muscle fibres in thick muscle sections. Special attention is paid to the procedures that preserve good morphology. Applying confocal microscopy and virtual 3D stereological grids, or tracing of capillaries in virtual reality, length of capillaries within a muscle volume or length of capillaries adjacent to a muscle fibre per fibre length, fibre surface area or fibre volume can be evaluated by an unbiased approach. Moreover, 3D models of capillaries and muscle fibres can be produced. Comparison of the developed methods with counting capillary profiles from 2D sections is discussed and the reader is warned that counting capillary profiles from 2D sections can underestimate the capillary length by as much as 75 percent. Application of the described 3D methodology is illustrated by the anatomical remodelling of capillarity during acute denervation and early reinnervation in the rat soleus and extensor digitorum longus muscles.  相似文献   

4.
During the post-weaning growth and maturation period (25/90 days after birth), rat limb muscles are submitted to specific adaptations. Our aim was to characterize the mechanical properties of two muscles that are opposite in terms of fibre-type distribution, the soleus and the extensor digitorum longus (EDL) muscles of male Wistar rats. Results showed a fast-to-slow fibre-type transition in soleus while no modification in fibre-type distribution was observed in EDL. A growth-induced increase in muscle force was observed. Soleus underwent an increase in twitch kinetics, but EDL showed no modification. Resistance to fatigue was higher in 90-day-old soleus but not modified in the EDL. Surprisingly, analysis of maximal shortening velocity showed a decrease in both soleus and EDL. Finally, tension/extension curves indicated a growth-induced increase in series elastic stiffness in the two muscles. These results suggest that during this growth period, skeletal muscles are submitted to differential adaptations. Moreover, whereas adaptation of biomechanical properties observed can be explained partly by an adaptation of fibre profile in soleus, this is not the case for EDL. It is suggested that changes in muscle architecture, which are often disregarded, could explain some variations in mechanical properties, especially when muscles undergo an increase in both mass and length.  相似文献   

5.
The distribution of capillaries in teleost and rat striated muscles was investigated using a number of different methods. A new method for directly viewing capillaries was developed. Teleost white muscle has a capillary: fibre (C:F) ratio of between 0.2 and 0.3; and 0.6 to 1.0 peripheral capillaries per muscle fibre. 26-49% of fibres had no peripheral capillaries. Values for the rat gastrocnemius were 1.2, 2.6 and 4.8% respectively which compares well with literature values. Flathead red muscle had a C:F ratio of between 1.9 and 2.5; and between 5.3 and 6.6 peripheral capillaries per muscle fibre depending on the method used. Values for rat soleus were 1.8 and 4.1 respectively. Teleost pink fibres had an intermediate number of capillaries. Rat striated muscle, particularly the gastrocnemius, was found to be heterogeneous with respect to the distribution of capillaries. Flathead red muscle was homogeneous whilst teleost white muscle was only slightly variable. Flathead red muscle fibres are well suppled with subsarcolemmal mitochondria. These show a clumped distribution corresponding to the position of capillaries. In contrast teleost white fibres are almost totally devoid of these and all other mitochondria. No differences were observed in the vascularisation of either muscle type along the length of the fish. The results are discussed in relation to the division of labour between fibre types during swimming.  相似文献   

6.
The aims of this study were (1) to determine the relationship between muscle fibre cross-sectional area and cytoplasmic density of myonuclei in high- and low-oxidative Xenopus muscle fibres and (2) to test whether insulin and long-term high fibre length caused an increase in the number of myonuclei and in the expression of α-skeletal actin and of myogenic regulatory factors (myogenin and MyoD) in these muscle fibres. In high- and low-oxidative muscle fibres from freshly frozen iliofibularis muscles, the number of myonuclei per millimetre fibre length was proportional to muscle fibre cross-sectional area. The in vivo myonuclear density thus seemed to be strictly regulated, suggesting that the induction of hypertrophy required the activation of satellite cells. The effects of muscle fibre length and insulin on myonuclear density and myonuclear mRNA content were investigated on high-oxidative single muscle fibres cultured for 4–5 days. Muscle fibres were kept at a low length (~15% below passive slack length) in culture medium with a high insulin concentration (~6 nmol/l: “high insulin medium”) or without insulin, and at a high length (~5% above passive slack length) in high insulin medium. High fibre length and high insulin medium did not change the myonuclear density of isolated muscle fibres during culture. High insulin increased the myonuclear α-skeletal actin mRNA content, whereas fibre length had no effect on α-skeletal actin mRNA content. After culture at high fibre length in high insulin medium, the myonuclear myogenin mRNA content was 2.5-fold higher than that of fibres cultured at low length in high insulin medium or in medium without insulin. Myonuclear MyoD mRNA content was not affected by fibre length or insulin. These in vitro experiments indicate that high muscle fibre length and insulin enhance muscle gene expression but that other critical factors are required to induce adaptation of muscle fibre size and performance.This work was partially supported by a research grant from the Haak Bastiaanse Kuneman Stichting.  相似文献   

7.
The total content of myosin heavy chains (MHC) and their isoform pattern were studied by biochemical methods in the slow-twitch (soleus) and fast-twitch (extensor digitorum longus) muscles of adult rat during atrophy after denervation and recovery after self-reinnervation. The pattern of fibre types, in terms of ultrastructure, was studied in parallel. After denervation, total MHC content decreased sooner in the slow-twitch muscle than in the fast-twitch. The ratio of MHC-1 and the MHC-2B isoforms to the MHC-2A isoform decreased in the slow and the fast denervated muscles, respectively. After reinnervation of the slow muscle, the normal pattern of MHC recovered within 10 days and the type 1 isoform increased above the normal. In the reinnervated fast muscle, the 2B/2A isoform ratio continued to decrease. Traces of the embryonic MHC isoform, identified by immunochemistry, were found in both denervated and reinnervated slow and fast muscles. A shift in fibre types was similar to that found in the MHC isoforms. Within 2 months of recovery a tendency to normalization was observed. The results show that (a) MHC-2B isoform and the morphological characteristics of the 2B-type muscle fibres are susceptible to lack of innervation, similar to those of type 1, (b) during muscle recovery induced by reinnervation the MHC isoforms and muscle fibres shift transiently to type 1 in the soleus and to type 2A in the extensor digitorum longus muscles, and (c) the embryonic isoform of MHC may appear in the adult skeletal muscles if innervation is disturbed.  相似文献   

8.
Measurements of muscle dimensions that affect respiration in relation to body weight were carried out in a tilapia, Oreochromis niloticus . The fish used in all measurements weighed 0.65–812.3 g. The data were analysed with respect to body weight using logarithmic transformations (log Y=log a + b log W ).
The slopes (b) of the log/log regression lines for weight of body trunk red muscle, average cross-sectional area of muscle fibre, average number of capillaries in direct contact with a muscle fibre, average capillary contact length with a fibre as a fraction of average fibre circumference and number of capillaries mm2 of fibre cross-sectional area [NA(cƒ)] were 1.16, 0.221, 0.084, 0.015, and −0.137 respectively.
These results show that there is an increase in muscle cross-sectional fibre area and number of capillaries in contact with muscle fibres whereas number of capillaries supplying a unit area of muscle fibre decreases during development. There is development of new capillaries with increase in cross-sectional area of red muscle fibres.  相似文献   

9.
Skeletal muscle fibres in mammalian limb muscles are of four types: slow, 2A, 2X, and 2B, each characterized by a distinct myosin heavy chain (MyHC) isoform. Existing monoclonal antibodies (mabs) against fast MyHCs lack fibre-type specificity across species and could not positively identify 2X fibres. In this work, mabs were raised against each of the fast MyHCs. These mabs were shown to be monospecific by Western blots and immunohistochemistry in the rat. The advantages of using these mabs for identifying the three fast fibre types and hybrid fibres expressing multiple isoforms were illustrated using rat tibialis anterior muscle. Immunohistochemical analyses confirmed the monospecificity of these mabs in the following additional species: mouse, guinea pig, rabbit, cat, and baboon. 2B fibres were absent in limb muscles of the cat and baboon. These mabs constitute a set of powerful tools for studying muscle fibre types and their transformations.  相似文献   

10.
In this study we have shown that the skeletal muscle fibres from adult (older than 26 weeks) mdx mice have gross structural deformities. We have characterized the onset and age dependence of this feature in mdx mice. The three dimensional structure of these deformities has been visualized in isolated fibres and the orientation of these deformities was determined within the muscle by confocal laser scanning microscopy. We have also shown that the occurrence of morphologically abnormal fibres is greater in muscles with longer fibres (extensor digitorum longus (EDL) and soleus, 6-7.3 mm long), than in muscles with shorter fibres (flexor digitorum brevis (FDB), 0.3-0.4 mm long). A population of post-degenerative fibres, with both central and peripheral nuclei coexistent along the length of the fibre, has also been identified in the muscles studied. We showed that a mild protocol of lengthening (eccentric) contractions (the muscle was stretched by 12% during a tetanic contraction) caused a major reduction in the maximal tetanic force subsequently produced by mdx EDL muscle. In contrast, maximal tetanic force production in normal soleus, normal EDL and mdx soleus muscles was not altered by this protocol. We suggest that the deformed fast glycolytic fibres which are found in adult mdx EDL but not in adult mdx soleus muscles are the population of fibres damaged by the lengthening protocol.  相似文献   

11.
赵国民  朱培闳 《生理学报》1988,40(4):315-325
用河豚毒素(TTX)慢性阻断大鼠坐骨神经的冲动传导,使后肢不活动,经过不同时间(最长7d)后离体观察了快肌伸趾长肌(EDL)和慢肌比目鱼肌(SOL)肌纤维终板区的诱发动作电位。我们发现在不活动期间动作电位超射和上升速率逐步下降,并从第4天起部分肌纤维能在含有1×10~(-7)g/ml TTX的溶液中被诱发产生动作电位(称抗TTX动作电位),待至第7天时全部SOL肌纤维和90%的EDL肌纤维都能被诱发出抗TTX动作电位。与去神经肌纤维相比,不仅抗TTX动作电位出现较晚,并且其超射和上升速率较低。在去掉TTX阻断使肌肉恢复活动后,动作电位超射和上升速率渐趋恢复,抗TTX动作电位逐渐消失。无论是动作电位的恢复还是抗TTX动作电位的消失,EDL肌纤维均快于SOL肌纤维。本文还讨论了不活动化使肌纤维动作电位变化以及快、慢肌差别的可能原因。  相似文献   

12.
Within animal skeletal muscle, focal adhesion kinase (FAK) has been associated with load-dependent molecular and metabolic adaptation including the regulation of insulin sensitivity. This study aimed to generate the first visual images of the localisation of FAK within human skeletal muscle fibres and its associated microvasculature using widefield and confocal immunofluorescence microscopy. Percutaneous muscle biopsies, taken from five lean, active males, were frozen and 5-μm cryosections were incubated with FAK antibodies for visualisation in muscle fibres and the microvasculature. Anti-myosin heavy chain type I was used for fibre-type differentiation. Muscle sections were also incubated with anti-dihydropyridine receptor (DHPR) to investigate co-localisation of FAK with the t-tubules. FITC-conjugated Ulex europaeus Agglutinin I stained the endothelium of the capillaries, whilst anti-smooth muscle actin stained the vascular smooth muscle of arterioles. Fibre-type differences in the intensity of FAK immunofluorescence were determined with image analysis software. In transversely and longitudinally orientated fibres, FAK was localised at the sarcolemmal regions. In longitudinally orientated fibres, FAK staining also showed uniform striations across the fibre and co-staining with DHPR suggests FAK associates with the t-tubules. There was no fibre-type difference in sarcoplasmic FAK content. Within the capillary endothelium and arteriolar smooth muscle, FAK was distributed heterogeneously as clusters. This is the first study to visualise FAK in human skeletal muscle microvasculature and within the (sub)sarcolemmal and t-tubule regions using immunofluorescence microscopy. This technique will be an important tool for investigating the role of FAK in the intracellular signalling of human skeletal muscle and the endothelium of its associated microvasculature.  相似文献   

13.
A morphometric analysis of white axial muscle of common carp Cyprinus carpio was undertaken in order to quantify increase in fibre size, fibre nuclei and fibre number in relation to somatic growth rate during early life. In fast-growing carp larvae fed zooplankton, length and height of fibres from the central part of dorsolateral muscle increased at the same rate (0.75) relative to the total length of the larvae during the first 2 weeks of feeding. During this period, the number of nuclei per fibre increased threefold while the number of nuclei per unit fibre surface remained constant. In fast-growing larvae fed a formulated diet, the total cross-sectional area of one epaxial quadrant of white muscle and the total area of white fibres increased at almost the same rate (3.15; 3.23) relative to larval total length during the first 28 days of exogenous feeding. The total number of white fibres increased faster (2.07) relative to the total length of larvae than the mean area of white fibres (1.16). Hyperplasia accounted for 64% of muscle growth in these larvae. The proportion of fibres with a width < 10 μm decreased from 72% at first feeding to 14% 28 days later, while the proportion of fibres with a width >20 μm which was 0% at first feeding increased up to 34% in the same time. The recruitment of new white fibres seemed to be almost the same in the whole muscle quadrant at first feeding and 18 or 28 days later but, 8 days after first feeding, a transient significant recruitment of new fibres was shown at the apex of the myotome. Comparisons between fast- and slow-growing groups of larvae showed that for a given larval total length: (1) the mean width of central white fibres was higher and the proportion of central fibres with a width <10 μm was lower in slow-growing larvae than in fast-growing ones; (2) the total number of white fibres was lower for a higher total cross-sectional area of white muscle in slow-growing larvae than in fast-growing ones. These results suggest that, in Cyprinus carpio larvae, slow-growing conditions are related to a decreased contribution of hyperplasia to muscle growth.  相似文献   

14.
Calcitonin gene-related peptide (CGRP) occurs only in some motoneurons. In this study, the presence of CGRP in motor endplates in relation to muscle fibre types was examined in slow (soleus muscle) and fast [tibialis anterior (TA) and extensor digitorum longus (EDL)] leg muscles of the rat. CGRP was detected by use of immunohistochemical methods, and staining for the mitochondrial-bound enzyme NADH-TR was used for demonstration of fibre types. The fibres showing low NADH-TR activity were interpreted as representing IIB fibres. All such fibres located in the superficial portion of TA were innervated by endplates displaying CGRP-like immunoreactivity (LI), whereas in the deep portion of TA some of these fibres lacked CGRP-LI at their endplates. Thirty per cent of the IIB fibres in EDL showed CGRP-LI at the endplates. All fibres in TA and EDL displaying high NADH-TR activity and interpreted as type-IIA fibres, lacked CGRP-LI in their motor innervation. One third of the fibres with intermediate NADH-TR activity in TA exhibited CGRP-LI at their endplates, whereas in EDL only few such fibres displayed CGRP-LI in the endplate formation. These fibres are likely to belong to type-IIX or type-I motor units. CGRP-LI was very rarely detected at the endplates in the soleus muscle. These observations show that distinct differences exist between the slow muscle, soleus, and the fast muscles, TA and EDL, but that there are also differences between the different types of fibres in TA and EDL with respect to presence of CGRP-LI at the endplates. As CGRP-LI was frequently detected at endplates of IIB fibres, it is likely that CGRP has a particular role related to the differentiation and maintenance of these fibres.  相似文献   

15.
Young Wistar rats underwent dynamic (D) or static (S) exercise from the 5th to 35th day after birth. Histochemical and biochemical analysis were performed in the extensor digitorum longus (EDL) and the soleus muscle (SOL). Lactate dehydrogenase (LDH) (regulating anaerobic metabolism) and citrate synthase (CS) and hydroxyacyl-CoA dehydrogenase (HAD) (both regulating aerobic metabolism) activities were determined spectrophotometrically. An increase of the fast oxidative-glycolytic (FOG) muscle fibres was found in the slow SOL muscle in both trained groups, i.e. by 10% in group D and by 7% in group S in comparison with the C group. The EDL muscle fibre distribution did not differ from those of control animals in respect to the slow oxidative (SO) fibre type. A higher percentage of FOG fibres by 19% was found in group D contrary to a decreased number of the fast glycolytic (FG) muscle fibres in this trained group. The greatest increase of CS (EDL 185%, SOL 176%) and HAD (EDL 83%, SOL 178%) activities were found in group D as compared with control group (C). Only small differences were observed in LDH activity. The values of characteristic enzyme activity ratios show that dynamic training resulted in an elevation of oxidative capacity of skeletal muscle, while the static load led preferentially along the glycolytic pathway. It may be concluded that an adaptive response to the training load during early postnatal development is different due to the type of exercise (dynamic or static) and/or the type of skeletal muscle (fast or slow).  相似文献   

16.
Our previous studies have shown that partial denervation of extensor digitorum longus muscle (EDL) in the rat at 3 days of age causes an increase in the activity of the intact motoneurons. The originally phasic pattern of activity of EDL became tonic after partial denervation. These modifications of motoneuron activity were associated with the change in the phenotype of the muscle from fast to slow contracting and with a conversion of the muscle fibres from a fast to a slow type. The present study investigates whether the size of the cell body of the active EDL motoneurons change in parallel with the altered muscular activity. The study involved partial denervation of rat EDL muscle by section of the L4 spinal nerve at 3 days of age. Then the remaining motoneurons from L5 spinal nerve supplying the EDL muscle were retrogradly labelled with horseradish peroxidase two months later. The results show a reduction in motoneuron size in parallel with an increase in activity of the motoneurons after partial denervation of EDL muscle.  相似文献   

17.
Continuous activity of isolated frog gastrocnemius muscle fibres provoked by repetitive stimulation of 5 Hz was used as an experimental model for fatigue development in different fibre types. Parameter changes of the elicited intracellular action potentials and mechanical twitches during the period of uninterrupted activity were used as criteria for fatigue evaluation. Slow fatigable muscle fibre (SMF) and fast fatigable muscle fibre (FMF) types were distinguished depending on the duration of their uninterrupted activity, which was significantly longer in SMFs than in FMFs. The normalized changes of action potential amplitude and duration were significantly smaller in FMFs than in SMFs. The average twitch force and velocity of contraction and relaxation were significantly higher in FMFs than in SMFs. Myosin ATPase (mATPase) and succinate dehydrogenase activity were studied by histochemical assessment in order to validate the fibre type classification based on their electrophysiological characteristics. Based on the relative mATPase reactivity, the fibres of the studied muscle were classified as one of five different types (1-2, 2, 2-3, 3 and tonic). Smaller sized fibres (tonic and type 3) expressed higher succinate dehydrogenase activity than larger sized fibres (type 1-2, 2), which is related to the fatigue resistance. The differences between fatigue development in SMFs and FMFs during continuous activity were associated with fibre-type specific mATPase and succinate dehydrogenase activity.  相似文献   

18.
Summary Glucose-6-phosphate dehydrogenase activity increases following denervation of rat skeletal muscle. The specificity of this effect to muscle fibre type was studied. Basal activity of the dehydrogenase was higher in soleus, a muscle composed predominantly of type I fibres, than in extensor digitorum longus, a muscle composed predominantly of type IIa and b fibres. The enzymatic activity of the soleus was also greater than that of the red (RQ) and white (WQ) portions of quadriceps muscle (predominantly type IIa and type IIb fibres, respectively). Following denervation, glucose-6-phosphate dehydrogenase increased in extensor digitorum longus and RQ, but not in WQ or the soleus. Following chronic treatment of rats with 3,3,5-triiodothyronine, which converts type I muscle fibres to type II, the dehydrogenase activity increased in both denervated soleus and extensor digitorum longus. It is concluded that the effect of denervation on glucose-6-phosphate dehydrogenase activity is selective for type IIa (fast oxidative-glycolytic) muscle fibres.  相似文献   

19.
Abstract: We studied the effects of denervation and reinnervation of the rat extensor digitorum longus muscle (EDL) on the oxidation of [6-14C]glucose to 14CO2. The rate of 14CO2 production decreased dramatically following denervation, and the decrease became significant 20 days after nerve section. Prior to day 20, changes apparently reflected the decline of muscle mass. Decreased 14CO2 production was due to reduced capacity of the enzymatic system (apparent Vmax); there was no change in apparent affinity for glucose (apparent K m). Mixing experiments revealed that the loss of oxidative capacity following denervation is not caused by production of soluble inhibitors by degenerating muscle. Oxidative metabolism, as measured by 14CO2 evolution, recovered during reinnervation. Surprisingly, the specific activity in reinnervated muscles displayed an "overshoot" of approximately 50%, which returned to control by day 60, possibly reflecting increased energy demand by the growing muscle. The time-course of the denervation-mediated change indicates that altered oxidative capacity is secondary to events that initiate denervation changes in muscle. Nevertheless, diminished oxidative capacity may be of considerable metabolic significance in denervated muscle.  相似文献   

20.
 The hypothesis that the limited adaptive range observed in fast rat muscles in regard to expression of the slow myosin is due to intrinsic properties of their myogenic stem cells was tested by examining myosin heavy chain (MHC) expression in regenerated rat extensor digitorum longus (EDL) and soleus (SOL) muscles. The muscles were injured by bupivacaine, transplanted to the SOL muscle bed and innervated by the SOL nerve. Three months later, muscle fibre types were determined. MHC expression in muscle fibres was demonstrated immunohistochemically and analysed by SDS-glycerol gel electrophoresis. Regenerated EDL transplants became very similar to the control SOL muscles and indistinguishable from the SOL transplants. Slow type 1 fibres predominated and the slow MHC-1 isoform was present in more than 90% of all muscle fibres. It contributed more than 80% of total MHC content in the EDL transplants. About 7% of fibres exhibited MHC-2a and about 7% of fibres coexpressed MHC-1 and MHC-2a. MHC-2x/d contributed about 5–10% of the whole MHCs in regenerated EDL and SOL transplants. The restricted adaptive range of adult rat EDL muscle in regard to the synthesis of MHC-1 is not rooted in muscle progenitor cells; it is probably due to an irreversible maturation-related change switching off the gene for the slow MHC isoform. Accepted: 11 June 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号