首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neurofibromatosis type 2 (NF2) protein, known as schwannomin or merlin, is a tumor suppressor involved in NF2-associated and sporadic schwannomas and meningiomas. It is closely related to the ezrin-radixin-moesin family members, implicated in linking membrane proteins to the cytoskeleton. The molecular mechanism allowing schwannomin to function as a tumor suppressor is unknown. In attempt to shed light on schwannomin function, we have identified a novel coiled-coil protein, SCHIP-1, that specifically associates with schwannomin in vitro and in vivo. Within its coiled-coil region, this protein is homologous to human FEZ proteins and the related Caenorhabditis elegans gene product UNC-76. Immunofluorescent staining of transiently transfected cells shows a partial colocalization of SCHIP-1 and schwannomin, beneath the cytoplasmic membrane. Surprisingly, immunoprecipitation assays reveal that in a cellular context, association with SCHIP-1 can be observed only with some naturally occurring mutants of schwannomin, or a schwannomin spliced isoform lacking exons 2 and 3, but not with the schwannomin isoform exhibiting growth-suppressive activity. Our observations suggest that SCHIP-1 interaction with schwannomin is regulated by conformational changes in schwannomin, possibly induced by posttranslational modifications, alternative splicing, or mutations.  相似文献   

2.
Most benign brain tumors are associated with loss of the Nf2 gene tumor suppressor product schwannomin/merlin. Interactions between schwannomin fragments have given rise to hypotheses of in vivo schwannomin folding and dimerization. Previously, we showed that schwannomin with missense mutations L360P, L535P, and Q538P alters interaction with betaII-spectrin and Hrs. Using yeast two-hybrid tests of interaction, we now show the effects of 11 Nf2 missense mutations on schwannomin self-interaction as well as schwannomin interaction with Hrs isoforms 1 and 2, betaII-spectrin, and p110. Missense mutations L46R and K364I significantly decreased affinity of schwannomin for binding all interacting proteins. The schwannomin L46R mutation may result in a complex conformational change that alters folding and denies betaII-spectrin access to an intact binding site in the C-terminal half of schwannomin. We show that unique inter- and intramolecular interactions occur for schwannomin isoform 2, suggesting that this schwannomin isoform has unique functional properties compared to schwannomin isoform 1.  相似文献   

3.
Ubiquitination appears to be involved in proteasome-dependent proteolysis and in the membrane trafficking system including endocytosis and exocytosis. In this study, we identified MDA-9/syntenin as a novel ubiquitin-binding protein by a yeast two-hybrid system using modified ubiquitin in which lysine 48 is substituted by arginine. It has been reported that MDA-9/syntenin is a membrane-associated protein and regulates a cellular process involving endocytosis and intracellular transport. We found that MDA-9/syntenin binds to ubiquitin by a non-covalent bond and is ubiquitinated covalently. MDA-9/syntenin has no ubiquitin-binding motifs that have so far been reported, suggesting that MDA-9/syntenin physically interacts with ubiquitin via a novel binding motif. MDA-9/syntenin is stable in the cell, suggesting that ubiquitin binding of MDA-9/syntenin or ubiquitination of MDA-9/syntenin is not related to proteolysis. Furthermore, we showed that overexpression of wild-type MDA-9/syntenin enhances formation of filopodia, whereas MDA-9/syntenin lacking the PDZ domain inhibits the formation of filopodia, suggesting that MDA-9/syntenin plays an important role via interaction with ubiquitin in the regulation of cancer metastasis and invasion.  相似文献   

4.
Membrane targeting of C2 domains of phospholipase C-delta isoforms.   总被引:1,自引:0,他引:1  
The C2 domain is a Ca(2+)-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. To understand the mechanisms by which the C2 domain mediates the membrane targeting of PLC-delta isoforms, we measured the in vitro membrane binding of the C2 domains of PLC-delta1, -delta3, and -delta4 by surface plasmon resonance and monolayer techniques and their subcellular localization by time-lapse confocal microscopy. The membrane binding of the PLC-delta1-C2 is driven by nonspecific electrostatic interactions between the Ca(2+)-induced cationic surface of protein and the anionic membrane and specific interactions involving Ca(2+), Asn(647), and phosphatidylserine (PS). The PS selectivity of PLC-delta1-C2 governs its specific Ca(2+)-dependent subcellular targeting to the plasma membrane. The membrane binding of the PLC-delta3-C2 also involves Ca(2+)-induced nonspecific electrostatic interactions and PS coordination, and the latter leads to specific subcellular targeting to the plasma membrane. In contrast to PLC-delta1-C2 and PLC-delta3-C2, PLC-delta4-C2 has significant Ca(2+)-independent membrane affinity and no PS selectivity due to the presence of cationic residues in the Ca(2+)-binding loops and the substitution of Ser for the Ca(2+)-coordinating Asp in position 717. Consequently, PLC-delta4-C2 exhibits unique pre-localization to the plasma membrane prior to Ca(2+) import and non-selective Ca(2+)-mediated targeting to various cellular membranes, suggesting that PLC-delta4 might have a novel regulatory mechanism. Together, these results establish the C2 domains of PLC-delta isoforms as Ca(2+)-dependent membrane targeting domains that have distinct membrane binding properties that control their subcellular localization behaviors.  相似文献   

5.
The merlin interacting proteins reveal multiple targets for NF2 therapy   总被引:1,自引:0,他引:1  
The neurofibromatosis 2 (NF2) tumor suppressor protein merlin is commonly mutated in human benign brain tumors. The gene altered in NF2 was located on human chromosome 22q12 in 1993 and the encoded protein named merlin and schwannomin. Merlin has homology to ERM family proteins, ezrin, radixin, and moesin, within the protein 4.1 superfamily. In efforts to determine merlin function several groups have discovered 34 merlin interacting proteins, including ezrin, radixin, moesin, CD44, layilin, paxillin, actin, N-WASP, betaII-spectrin, microtubules, TRBP, eIF3c, PIKE, NHERF, MAP, RalGDS, RhoGDI, EG1/magicin, HEI10, HRS, syntenin, caspr/paranodin, DCC, NGB, CRM1/exportin, SCHIP1, MYPT-1-PP1delta, RIbeta, PKA, PAK (three types), calpain and Drosophila expanded. Many of the proteins that interact with the merlin N-terminal domain also bind ezrin, while other merlin interacting proteins do not bind other members of the ERM family. Merlin also interacts with itself. This review describes these proteins, their possible roles in NF2, and the resultant hypothesized merlin functions. Review of all of the merlin interacting proteins and functional consequences of losses of these interactions reveals multiple merlin actions in PI3-kinase, MAP kinase and small GTPase signaling pathways that might be targeted to inhibit the proliferation of NF2 tumors.  相似文献   

6.
The dopamine D2 receptor (D2R) is target for antipsychotic drugs and associated with several neuropsychiatric disorders. D2R has a long third cytoplasmic loop and a short carboxyl-terminal cytoplasmic tail. It exists as two alternatively spliced isoforms, termed D2LR and D2SR, which differ in the presence and absence, respectively, of a 29 amino acid insert in the third cytoplasmic loop. To evaluate the differential roles of the two D2R isoforms, we transfected both isoforms into NG108-15 cells and observed their subcellular localization by a confocal laser scanning light microscope. D2SR was predominantly localized at the plasma membrane, whereas D2LR was mostly retained in the perinuclear region around the Golgi apparatus. Using a yeast two hybrid system with a mouse brain cDNA library and coimmunoprecipitation assay, we found that heart-type fatty acid binding protein (H-FABP) interacts with D2LR but not with D2SR. H-FABP is a cytosolic protein involved in binding and transport of fatty acids. Overexpressed H-FABP and endogenous H-FABP were colocalized with the intracellular D2LR in NG108-15 cells. Furthermore, in the rat striatum, H-FABP was detected in the D2R-expressing neurons. From these results, H-FABP is associated with D2LR, and may thereby modulate the subcellular localization and function of D2LR.  相似文献   

7.
The possible role of protein kinase C in the regulation of glucose transport in the rat adipose cell has been examined. Both insulin and phorbol 12-myristate 13-acetate (PMA) stimulate 3-O-methylglucose transport in the intact cell ein association with the subcellular redistribution of glucose transporters from the low density microsomes to the plasma membranes, as assessed by cytochalasin B binding. In addition, the actions of insulin and PMA on glucose transport activity and glucose transporter redistribution are additive. Furthermore, PMA accelerates insulin's stimulation of glucose transport activity, reducing the t1/2 from 3.2 +/- 0.4 to 2.1 +/- 0.2 min (mean +/- S.E.). However, the effect of PMA on glucose transport activity is approximately 10% of that for insulin whereas its effect on glucose transporter redistribution is approximately 50% of the insulin response. Immunoblots of the GLUT1 and GLUT4 glucose transporter isoforms in subcellular membrane fractions also demonstrate that the translocations of GLUT1 in response to PMA and insulin are of similar magnitude whereas the translocation of GLUT4 in response to insulin is markedly greater than that in response to PMA. Thus, glucose transport activity in the intact cell with PMA and insulin correlates more closely with the appearance of GLUT4 in the plasma membrane than cytochalasin B-assayable glucose transporters. Although these data do not clarify the potential role of protein kinase C in the mechanism of insulin action, they do suggest that the mechanisms through which insulin and PMA stimulate glucose transport are distinct but interactive.  相似文献   

8.
Mutations of the neurofibromatosis 2 (NF2) tumor suppressor gene have frequently been detected not only in schwannomas and other central nervous system tumors of NF2 patients but also in their sporadic counterparts and malignant tumors unrelated to the NF2 syndrome such as malignant mesothelioma, indicating a broader role for the NF2 gene in human tumorigenesis. However, the mechanisms by which the NF2 product, merlin or schwannomin, is regulated and controls cell proliferation remain elusive. Here, we identify a novel GTP-binding protein, dubbed NGB (referring to NF2-associated GTP binding protein), which binds to merlin. NGB is highly conserved between Saccharomyces cerevisiae, Caenorhabditis elegans, and human cells, and its GTP-binding region is very similar to those found in R-ras and Rap2. However, ectopic expression of NGB inhibits cell growth, cell aggregation, and tumorigenicity in tumorigenic schwanomma cells. Down-regulation and infrequent mutation of NGB were detected in human glioma cell lines and primary tumors. The interaction of NGB with merlin impairs the turnover of merlin, yet merlin does not affect the GTPase nor GTP-binding activity of NGB. Finally, the tumor suppressor functions of NGB require merlin and are linked to its ability to suppress cyclin D1 expression. Collectively, these findings indicate that NGB is a tumor suppressor that regulates and requires merlin to suppress cell proliferation.  相似文献   

9.
10.
11.
PDZ proteins organize multiprotein signaling complexes. According to current views, PDZ domains engage in protein-protein interactions. Here we show that the PDZ domains of several proteins bind phosphatidylinositol 4,5-bisphosphate (PIP(2)). High-affinity binding of syntenin to PIP(2)-containing lipid layers requires both PDZ domains of this protein. Competition and mutagenesis experiments reveal that the protein and the PIP(2) binding sites in the PDZ domains overlap. Overlay assays indicate that the two PDZ domains of syntenin cooperate in binding to cognate peptides and PIP(2). Experiments on living cells demonstrate PIP(2)-dependent and peptide-dependent modes of plasma membrane association of the PDZ domains of syntenin. These observations suggest that local changes in phosphoinositide concentration control the association of PDZ proteins with their target receptors at the plasma membrane.  相似文献   

12.
Nramp2, also known as DMT1 and DCT1, is a 12-transmembrane (TM) domain protein responsible for dietary iron uptake in the duodenum and iron acquisition from transferrin in peripheral tissues. Nramp2/DMT1 produces by alternative splicing two isoforms differing at their C terminus (isoforms I and II). The subcellular localization, mechanism of action, and destination of divalent cations transported by the two Nramp2 isoforms are not completely understood. Stable CHO transfectants expressing Nramp2 isoform II modified by addition of a hemaglutinin epitope in the loop defined by the TM7-TM8 interval were generated. Immunofluorescence with permeabilized and intact cells established that Nramp2 isoform II is expressed at the plasma membrane and demonstrated the predicted extracytoplasmic location of the TM7-TM8 loop. Using the fluorescent, metal-sensitive dye calcein, and a combination of membrane-permeant and -impermeant iron chelators, Nramp2 transport was measured and quantitated with respect to kinetic parameters and at steady state. Iron transport at the plasma membrane was time- and pH-dependent, saturable, and proportional to the amount of Nramp2 expression. Iron uptake by Nramp2 at the plasma membrane was into the nonferritin-bound, calcein-accessible so-called "labile iron pool." Ion selectivity experiments show that Nramp2 isoform II can also transport Co(2+) and Cd(2+) but not Mg(2+) into the calcein-accessible pool. Parallel experiments with transfectants expressing the lysosomal Nramp1 homolog do not show any divalent cation transport activity, establishing major functional differences between Nramp1 and Nramp2. Monitoring the effect of Nramp2 on the calcein-sensisitve labile iron pool allows a simple, rapid, and nonisotopic approach to the functional study of this protein.  相似文献   

13.
Rab family proteins are generally known as regulators of protein transport and trafficking. A number of Rab proteins have been implicated in cancer development and/or progression. Here we report the identification of a novel Rab-like protein, which we have named RBEL1 (Rab-like protein 1) for its higher similarity to the Rab subfamily members. We have characterized two isoforms of RBEL1 including the predominant RBEL1A and the less abundant RBEL1B that results from alternative splicing. Both isoforms harbor conserved N-terminal guanine trinucleotide phosphate (GTP) binding domains and, accordingly, are capable of binding to GTP. Both isoforms contain variable C termini and exhibit differential subcellular localization patterns. Unlike known Rabs that are mostly cytosolic, RBEL1B predominantly resides in the nucleus, whereas RBEL1A is localized primarily to the cytosol. Interestingly, a point mutation affecting RBEL1B GTP binding also alters the ability of mutant protein to accumulate in the nucleus, suggesting GTP binding potential to be important for RBEL1B nuclear localization. Our results also indicate that RBEL1A is overexpressed in about 67% of primary breast tumors. Thus, RBEL1A and RBEL1B are novel Rab-like proteins that localize in the nucleus and cytosol and may play an important role in breast tumorigenesis.  相似文献   

14.
One important factor for the determination of the specific functions of protein kinase C (PKC) isoforms is their specific subcellular localization. In NIH 3T3 fibroblasts phorbol esters induce translocation of PKCalpha to the plasma membrane and the nucleus. In order to investigate PKCalpha's subcellular distribution and especially its nuclear accumulation in more detail we used fusion proteins consisting of PKCalpha and the green fluorescent protein (GFP). Purified GFP-PKCalpha from baculovirus-infected insect cells undergoes nuclear accumulation without any further stimuli in digitonin-permeabilized cells. Interestingly, permeabilization appears to be a trigger for PKCalpha's nuclear translocation, since the fusion protein also translocates to the nucleus in transiently transfected cells following permeabilization. This suggests that PKCalpha has a high nuclear binding capacity even in the case of large protein amounts. In contrast to endogenous PKCalpha, overexpressed GFP-PKCalpha as well as overexpressed PKCalpha itself translocates mainly to the plasma membrane and only to a smaller extent to the nucleus following stimulation with phorbol ester. Use of fusion proteins of GFP and different mutants of PKCalpha enabled determination of motifs involved PKCalpha's subcellular distribution: A25E and K368R point mutations of PKCalpha showed enhanced affinity for the plasma membrane, whereas sequences within the regulatory domain probably confer PKCalpha's nuclear accumulation.  相似文献   

15.
ERM proteins in cell adhesion and membrane dynamics.   总被引:27,自引:0,他引:27  
Ezrin, radixin and moesin, collectively known as the ERM proteins, are a group of closely related membrane-cytoskeleton linkers that regulate cell adhesion and cortical morphogenesis. ERM proteins can self-associate through intra- and inter-molecular interactions, and these interactions mask several binding sites on the proteins. ERM activation involves unfolding of the molecule, and allows the protein to bind to plasma membrane components either directly, or indirectly through linker proteins. The discovery that the tumour-suppressor NF2, also known as merlin/schwannomin, is related to ERM proteins has added a new impetus to investigations of their roles. This review discusses current understanding of the structure and function of members of the ERM family of proteins.  相似文献   

16.
We have isolated a subcellular fraction of small vesicles (mean diameter, 300 nm) from frog photoreceptors, that accumulate newly synthesized rhodopsin with kinetics paralleling its appearance in post-Golgi membranes in vivo. This fraction is separated from other subcellular organelles including Golgi and plasma membranes and synaptic vesicles that are sorted to the opposite end of the photoreceptor cell. The vesicles have very low buoyant density in sucrose gradients (rho = 1.09 g/ml), a relatively simple protein content and an orientation of rhodopsin expected of transport membranes. Reversible inhibition of transport by brefeldin A provides evidence that these vesicles are exocytic carriers. Specific immunoadsorption bound vesicles whose protein composition was indistinguishable from the membranes sedimented from the subcellular fraction. Some of these proteins may be cotransported with rhodopsin to the rod outer segment; others may be involved in vectorial transport.  相似文献   

17.
The catalytic alpha isoforms of the Na+, K(+)-ATPase and stimuli controlling the plasma membrane abundance and intracellular distribution of the enzyme were studied in isolated bovine articular chondrocytes which have previously been shown to express low and high ouabain affinity alpha isoforms (alpha 1 and alpha 3 respectively; alpha 1 > alpha 3). The Na+, K(+)-ATPase density of isolated chondrocyte preparations was quantified by specific 3H-ouabain binding. Long-term elevation of extracellular medium [Na+] resulted in a significant (31%; p < 0.05) upregulation of Na+, K(+)-ATPase density and treatment with various pharmacological inhibitors (Brefeldin A, monensin and cycloheximide) significantly (p < 0.001) blocked the upregulation. The subcellular distribution of the Na+, K(+)-ATPase alpha isoforms was examined by immunofluorescence confocal laser scanning microscopy which revealed predominantly plasma membrane immunostaining of alpha subunits in control chondrocytes. In Brefeldin A treated chondrocytes exposed to high [Na+], Na+, K(+)-ATPase alpha isoforms accumulated in juxta-nuclear pools and plasma membrane Na+, K(+)-ATPase density monitored by 3H-ouabain binding was significantly down-regulated due to Brefeldin A mediated disruption of vesicular transport. There was a marked increase in intracellular alpha 1 and alpha 3 staining suggesting that these isoforms are preferentially upregulated following long-term exposure to high extracellular [Na+]. The results demonstrate that Na+, K(+)-ATPase density in chondrocytes is elevated in response to increased extracellular [Na+] through de novo protein synthesis of new pumps containing alpha 1 and alpha 3 isoforms, delivery via the endoplasmic reticulum-Golgi complex constitutive secretory pathway and insertion into the plasma membrane.  相似文献   

18.
19.
Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.  相似文献   

20.
The antigen recognized by the E/C8-monoclonal antibody is expressed in various avian embryonic cell types known also to express neurofilament (NF) immunoreactivity. To determine whether the E/C8-antigen corresponds to any of the known NF components, we compared their subcellular locations, immunocross-reactivities, and electrophoretic behaviors. We found that the E/C8-antibody binds to NF bundles in electron microscope preparations of neurons, but does not correspond to any of the known NF proteins by immunological or electrophoretic criteria. Immunoadsorption with the monoclonal antibody resulted in co-purification of a 73,000-D protein with one of the known NF proteins in homogenates from 20-d embryonic chick brains, but with vimentin intermediate filament protein in similarly prepared homogenates from 4-d embryonic chicks. We suggest that the E/C8-antigen is an intermediate filament-associated protein that binds to different filament types at different stages of development. We have named it NAPA-73, an acronym for neurofilament-associated protein, avian-specific, 73,000 D, on the basis of its binding specificity in mature neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号