首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Bacillus circulans IAM1165 produces at least two extracellular beta-1,3-glucanases that lyse fungal cell walls. One of these extracellular enzymes was purified to homogeneity. The molecular mass was 87 kDa, and the pI was 4.3. The optimum temperature of the enzyme reaction was 70 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate. The pH range of the enzyme was broad (pH 4.5 to 9.0), and the optimum pH was 6.5. The enzyme is an endo beta-1,3-glucanase and has a random cleavage pattern.  相似文献   

2.
Trichoderma asperellum produces at least two extracellular beta-1,3-glucanases upon induction with cell walls from Rhizoctonia solani. A beta-1,3-glucanase was purified by gel filtration and ion exchange chromatography. A typical procedure provided 35.7-fold purification with 9.5% yield. The molecular mass of the purified exo-beta-1,3-glucanases was 83.1 kDa as estimated using a 12% (w/v) SDS-electrophoresis slab gel. The enzyme was only active toward glucans containing beta-1,3-linkages and hydrolyzed laminarin in an exo-like fashion to form glucose. The K(m) and V(max) values for exo-beta-1,3-glucanase, using laminarin as substrate, were 0.087 mg ml(-1) and 0.246 U min(-1), respectively. The pH optimum for the enzyme was pH 5.1 and maximum activity was obtained at 55 degrees C. Hg(2+) strongly inhibited the purified enzyme.  相似文献   

3.
Bacillus circulans IAM1165 produces three major extracellular beta-1,3-glucanases (molecular masses, 28, 42, and 91 kDa) during the stationary phase of growth. The 28- and 42-kDa enzymes were purified to homogeneity from the culture supernatant in this study. The properties of these two enzymes were examined, together with those of the 91-kDa enzyme previously isolated. The enzymatic properties of the 28- and 42-kDa beta-1,3-glucanases closely resemble each other. The enzymes belong to a category of endo type 1,3-beta-D-glucan glucanohydrolases. The enzymes were active at pH 4.0 to 7.0. The optimum temperature of the reactions was 60 degrees C when laminarin (a soluble beta-1,3-glucan) was used as the substrate at pH 7.0. The enzymes hydrolyzed barley glucan and lichenan (beta-1,3-1,4-glucans) more effectively than laminarin. Of the three enzymes, the 42-kDa enzyme lysed fungal cell walls the most effectively.  相似文献   

4.
Thirty samples of fungi belonging to 17 species living in marine environments were studied for their ability to produce extracellular enzymes. In the culture fluids, a variety of glycosidases (beta-glucosidases, N-acetyl-beta-glucosaminidase, beta-galactosidases, and alpha-mannosidases) and glucanases (amylases and beta-1,3-glucanases) were found. Several cultures were found that could be used as efficient producers of either individual enzymes or a whole complement of enzymes degrading carbohydrate-containing compounds. Optimal growth conditions for the fungus Chaetomium indicum and beta-1,3-glucanase biosynthesis were developed. beta-1,3-Glucanase was isolated by a combination of ion-exchange chromatography, ultrafiltration, and gel chromatography. The molecular mass of the enzyme determined by gel-filtration was 54 kD. The enzyme was stable at temperatures below 50 degrees C, had a temperature optimum for activity at 60 degrees C, and retained activity between pH 4.5 and 7.5. The pH dependence of the beta-1, 3-glucanase activity showed two maxima, at pH 4.4 and 5.6; this suggested the existence of two forms of the enzyme. Analysis of the products of enzymatic hydrolysis of laminaran, transglycosylating ability, and the effect of a specific natural inhibitor indicates that both forms are exo-beta-1,3-glucanases.  相似文献   

5.
The nucleotide sequence of the betaglIIA gene, encoding the extracellular beta-1,3-glucanase IIA (betaglIIA) of the yeast-lytic actinomycete Oerskovia xanthineolytica LL G109, was determined. Sequence comparison shows that the betaglIIA enzyme has over 80% identity to the betaglII isoenzyme, an endo-beta-1,3-glucanase having low yeast-lytic activity secreted by the same bacterium. The betaglIIA enzyme lacks a glucan- or mannan-binding domain, such as those observed in beta-1,3-glucanases and proteases having high yeast/fungus-lytic activity. It can be included in the glycosyl hydrolase family 16. Gene fusion expression in Bacillus subtilis DN1885 followed by preliminary characterization of the recombinant gene product indicates that betaglIIA has a pI of 3.8 to 4.0 and is active on both laminarin and curdlan, having an acid optimum pH activity (ca. 4.0).  相似文献   

6.
A Clostridium thermocellum gene (licB) encoding a thermoactive 1,3-1,4-beta-glucanase (lichenase) with a molecular weight of about 35,000 was localized on a 1.5-kb DNA fragment by cloning and expression in E. coli. The enzyme acts on beta-glucans with alternating beta-1,3- and beta-1,4-linkages such as barley beta-glucan and lichenan, but not on beta-glucans containing only 1,3- or 1,4-glucosidic bonds. It is active over a broad pH range (pH 5-12) and has a temperature optimum around 80 degrees C. The C. thermocellum lichenase is unusually resistant against inactivation by heat, ethanol or ionic detergents. These properties make the enzyme highly suitable for industrial application in the mashing process of beer brewing.  相似文献   

7.
A beta-1,6-glucanase was purified to apparent homogeneity from a commercial yeast digestive enzyme prepared from Streptomyces rochei by a series of column chromatographies. The molecular mass of the purified enzyme was 60 kDa by SDS-PAGE. The purified enzyme had an optimum pH range from 4.0 to 6.0 and was stable in the same pH range. The enzyme was stable under 50 degrees C but lost almost all activity at 60 degrees C. The enzyme was specific to beta-1,6-glucan and had little activity towards beta-1,3-glucan and beta-1,4-glucan. When the beta-1,6-glucan was hydrolyzed with the purified enzyme for 5 h, the reaction products contained 20% glucose, 36% gentiobiose, and 44% other oligosaccharides, suggesting that the enzyme is an endo-type glucanase. When the purified enzyme was used for the digestion of the cell wall of Saccharomyces cerevisiae, cell-wall proteins covalently bound to the cell-wall glucan were recovered as soluble forms, suggesting that this enzyme is useful for analysis of yeast-cell wall proteins.  相似文献   

8.
The basidiomycete QM 806 excreted large amounts of beta-1,3-glucanase into the culture medium. Synthesis and excretion of the enzyme were triggered by a critically low concentration of carbon source. The extracellular beta-1,3-glucanase exhibited a remarkable stability. Addition of glucose or other carbon sources to a culture after consumption of the initial carbon source led to an inactivation of the extracellular beta-1,3-glucanase by an inactivating system, which could be separated from the cells. The inactivation of beta-1,3-glucanse was prevented by cycloheximide. This indicates the necessity of active protein synthesis for the inactivation process but does not prove that the inactivating system itself is a protein. Marked changes in the electrophoretic mobility and immunological properties of beta-1,3-glucanase indicate rather profound alterations of the enzyme protein in the course of inactivation.  相似文献   

9.
A gene encoding an exo-beta-1,3-galactanase from Clostridium thermocellum, Ct1,3Gal43A, was isolated. The sequence has similarity with an exo-beta-1,3-galactanase of Phanerochaete chrysosporium (Pc1,3Gal43A). The gene encodes a modular protein consisting of an N-terminal glycoside hydrolase family 43 (GH43) module, a family 13 carbohydrate-binding module (CBM13), and a C-terminal dockerin domain. The gene corresponding to the GH43 module was expressed in Escherichia coli, and the gene product was characterized. The recombinant enzyme shows optimal activity at pH 6.0 and 50 degrees C and catalyzes hydrolysis only of beta-1,3-linked galactosyl oligosaccharides and polysaccharides. High-performance liquid chromatography analysis of the hydrolysis products demonstrated that the enzyme produces galactose from beta-1,3-galactan in an exo-acting manner. When the enzyme acted on arabinogalactan proteins (AGPs), the enzyme produced oligosaccharides together with galactose, suggesting that the enzyme is able to accommodate a beta-1,6-linked galactosyl side chain. The substrate specificity of the enzyme is very similar to that of Pc1,3Gal43A, suggesting that the enzyme is an exo-beta-1,3-galactanase. Affinity gel electrophoresis of the C-terminal CBM13 did not show any affinity for polysaccharides, including beta-1,3-galactan. However, frontal affinity chromatography for the CBM13 indicated that the CBM13 specifically interacts with oligosaccharides containing a beta-1,3-galactobiose, beta-1,4-galactosyl glucose, or beta-1,4-galactosyl N-acetylglucosaminide moiety at the nonreducing end. Interestingly, CBM13 in the C terminus of Ct1,3Gal43A appeared to interfere with the enzyme activity toward beta-1,3-galactan and alpha-l-arabinofuranosidase-treated AGP.  相似文献   

10.
beta-1,3-Xylanase was purified to gel electrophoretic homogeneity and 83-fold from a cell-free culture fluid of Vibrio sp. XY-214 by ammonium sulfate precipitation and successive chromatographies. The enzyme had a pl of 3.6 and a molecular mass of 52 kDa. The enzyme had the highest level of activity at pH 7.0 and 37 degrees C. The enzyme activity was completely inhibited by Cu2+, Hg2+, and N-bromosuccinimide. The enzyme hydrolyzed beta-1,3-xylan to produce mainly xylotriose and xylobiose but did not act on xylobiose, p-nitrophenyl-beta-D-xyloside, beta-1,4-xylan, beta-1,3-glucan, or carboxymethyl cellulose.  相似文献   

11.
Fungal cell wall degrading chitinases and glucanases attained significance in agriculture, medicine, and environment management. The present study was conducted to describe the optimum conditions required for the production of beta-1,4-N-acetyl glucosaminidase (NAGase) and beta-1,3-glucanase by a biocontrol strain of Bacillus subtilis AF 1. B. subtilis AF 1 was grown in minimal medium with colloidal chitin (3.0%) and yeast extract (0.3% YE ) and incubated at pH 7.0 and 30 degrees C on constant shaker at 180 rpm for 6 days produced highest amounts of NAGase. Presence of 0.5 mM of phenyl methyl sulfonyl fluoride (PMSF) and 0.04% of Tween 20 further improved the enzyme production. B. subtilis AF 1 grown in minimal medium with laminarin (1%) and yeast extract (0.3%) for 3 days produced maximum amount of beta-1,3-glucanase. These conditions can be further scaled-up for large-scale production of NAGase and beta-1,3-glucanase by B. subtilis AF 1.  相似文献   

12.
A beta-1,3-xylanase-producing bacterium, Alcaligenes sp. XY-234, was isolated from the marine environment. The organism produced endo-1,3-beta-xylanase at a high level in the culture fluid. The enzyme was purified 292-fold by ammonium sulfate precipitation and several column chromatographies. The final enzyme preparation appeared to be homogeneous on disc gel electrophoresis and SDS-PAGE with a molecular mass of 59 kDa, and the pI was 4.0. The enzyme hydrolyzed beta-1,3-xylan and larger xylooligosaccharides than xylobiose to give several xylooligosaccharides, but it could not hydrolyze xylobiose, p-nitrophenyl-beta-D-xyloside, and beta-1,4-xylan. The Km of the enzyme was 4.0 mg/ml. Optimal pH and temperature were 7.5 and 40 degrees C, respectively. It was stable from pH 6.0 to 10 and at a temperature of less than 40 degrees C. The enzyme was strongly inhibited by 1 mM HgCl(2)., AlCl(3), CuCl(2), FeCl(3), HgCl(2), Pb(CH(3)COO) (2), and N-bromosuccinimide.  相似文献   

13.
McGrath CE  Wilson DB 《Biochemistry》2006,45(47):14094-14100
Thermobifida fusca is a filamentous soil bacterium that plays a major role in the breakdown of plant biomass. In this paper, we report the cloning, expression, purification, and characterization of the T. fusca enzyme, Lam81A. The Carbohydrate Active Enzymes Database (http://afmb.cnrs-mrs.fr/CAZY/) indicates that Lam81A belongs to a relatively uncharacterized family of beta-1,3-glucanases, family GH-81 [Coutinho, P. M., and Henrissat, B. (1999) in Recent Advances in Carbohydrate Bioengineering (Gilbert, H. J., Davies, G., Henrissat, B., and Svensson, B., Eds.) pp 3-12, The Royal Society of Chemistry, Cambridge, U.K.]. Microarray analysis suggests that Lam81A plays a role in biomass degradation, where its natural substrate may be the plant cell wall polysaccharide, callose, which is a polymer of beta-1,3-linked glucose. Characterization of Lam81A has shown that the enzyme is specific for beta-1,3-linked glucose polysaccharides, is endohydrolytic, and utilizes an inverting mechanism for substrate hydrolysis. In addition, the enzyme has a broad pH optimum from 5.5 to 10, a temperature optimum of 50 degrees C, and demonstrates substrate inhibition, as well as showing a high basal level of expression.  相似文献   

14.
A beta-1,3-glucanase, from culture filtrates of Trichoderma harzianum, was purified in sequential steps by gel filtration, hydrophobic interaction and ion exchange chromatography. A typical procedure provided 69-fold purification with 0.32% yield. The molecular mass of the protein was found to be approximately 29 kDa, as estimated by SDS-PAGE on a 10% slab gel. The K(M) and V(max) values for beta-1,3-glucanase, using laminarin as substrate, were 1. 72 mg ml(-1) and 3.10 U ml(-1), respectively. The pH optimum for the enzyme was pH 4.4 and maximum activity was obtained at 50 degrees C. The enzyme was strongly inhibited by HgCl(2) and SDS. These results suggest that each beta-1,3-glucanase produced by T. harzianum is different and is probably encoded by different genes.  相似文献   

15.
An enzyme that has both beta-1,4-glucanase and chitosanase activities was found in the culture medium of the soil bacterium Lysobacter sp. IB-9374, a high lysyl endopeptidase-producing strain. The enzyme was purified to homogeneity from the culture filtrate using five purification steps and designated Cel8A. The purified Cel8A had a molecular mass of 41 kDa, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A pH optimum of 5.0 was found for the beta-1,4-glucanase activity, and pH optima of 5.0 and 7.0 were found for the chitosanase activity. Nucleotide sequencing of the Cel8A gene yielded a deduced amino acid sequence that comprises a 33-amino acid, N-terminal signal peptide and a mature enzyme consisting of a 381-residue polypeptide with a predicted molecular mass of 41,241 Da. The amino acid sequence of the Cel8A, which contains the catalytic module of glycosyl hydrolase family 8, is homologous to beta-1,3-1,4-D-glucanase from Bacillus circulans WL-12 and endoglucanase N-257 from B. circulans KSM-N257.  相似文献   

16.
A 1,3-beta-D-glucan (callose) synthase (CS) from a plasma membrane fraction of germinating peanut (Arachis hypogaea L.) cotyledons has been purified to apparent homogeneity as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), amino-terminal analysis, and the Western blots pattern. The purification protocol involved preparation of a high specific activity plasma membrane fraction, selective solubilization of the enzyme from the membrane with 0.5% digitonin at a protein-to-detergent ratio of 1:6, sucrose gradient centrifugation, and chromatography on hydroxylapatite and DEAE-Sephadex A-50. The purified CS shows a molecular mass of approximately 48,000 by SDS-PAGE, pH optimum of 7.4, leucine as the amino-terminal residue, Km for UDP-glucose of 0.67 mM, and Vmax of 6.25 mumol/min/mg protein. The enzyme is specific for UDP-glucose as the glucosyl donor and required Ca2+, at an optimum concentration of 2-5 mM, for activity. The enzyme activity was inhibited by nucleotides (ATP, GTP, CTP, UTP, UDP, and UMP). The enzyme activity was also inhibited by the addition of EDTA or EGTA to the enzyme, but this inhibition was fully reversible by the addition of Ca2+. The reaction product formed during incubation of UDP-[14C]glucose and cellobiose with purified enzymes was susceptible to digestion by exo-(1,3)-beta-glucanase, but was resistant to alpha- and beta-amylases and to periodate oxidation, indicating that the polymer formed was 1,3-beta-glucan, and beta-1,4 and beta-1,6 linkages were absent.  相似文献   

17.
Streptococcus bovis JB1 was found to produce a 25-kDa extracellular enzyme active against beta-(1,3-1,4)-glucans. A gene was isolated encoding a specific beta-(1,3-1,4)-glucanase that corresponds to this size and belongs to glycoside hydrolase family 16. A 4- to 10-fold increase in supernatant beta-glucanase activity was obtained when the cloned beta-glucanase gene was reintroduced into S. bovis JB1 by use of constructs based on the plasmid vector pTRW10 or pIL253. The beta-(1,3-1,4)-glucanase gene was also expressed upon introduction of the pTRW10 construct pTRWL1R into Lactococcus lactis IL2661 and Enterococcus faecalis JH2-SS, although extracellular activity was 8- to 50-fold lower than that in S. bovis JB1. The beta-(1,3-1,4)-glucanase purified from the culture supernatant of S. bovis JB1 carrying pTRWL1R showed a K(m) of 2.8 mg per ml and a Vmax of 338 mumol of glucose equivalents per min per mg of protein with barley beta-glucan as the substrate. The S. bovis beta-(1,3-1,4)-glucanase may contribute to the ability of this bacterium to utilize starch by degrading structural polysaccharides present in endosperm cell walls.  相似文献   

18.
S Ebisu  K Kato  S Kotani    A Misaki 《Journal of bacteriology》1975,124(3):1489-1501
Studies were made on the physical and chemical properties of polysaccharides synthesized by cell-free extracts of Streptococcus mutans, Streptococcus sanguis, and Streptococcus sp. and their susceptibilities to dextranases. Among the polysaccharides examined, insoluble glucans were rather resistant to available dextranase preparations, and the insoluble, sticky glucan produced by S. mutans OMZ 176, which could be important in formation of dental plaques, was the most resistant. By enrichment culture of soil specimens, using OMZ 176 glucans as the sole carbon source, an organism was isolated that produced colonies surrounded by a clear lytic zone on opaque agar plates containing the OMZ 176 glucan. The organism was identified as a strain of Flavobacterium and named the Ek-14 bacterium. EK-14 bacterium was grown in Trypticase soy broth, and an enzyme capable of hydrolyzing the OMZ 176 glucan was concentrated from the culture supernatant and purified by negative adsorption on a diethylaminoethyl-cellulose (DE-32) column and gradient elution chromatography with a carboxymethyl-cellulose (CM-32) column. The enzyme was a basic protein with an isoelectric point of pH 8.5 and molecular weight of 65,000. Its optimum pH was 6.3 and its optimal temperature was 42 C. The purified enzyme released 11% of the total glucose residues of the OMZ 176 glucan as reducing sugars and solubilized about half of the substrate glucan. The products were found to be isomaltose, nigerose, and nigerotriose, with some oligosaccharides. The purified enzyme split the alpha-1,3-glucan endolytically and was inactive toward glucans containing alpha-1,6, alpha-1,4, beta-1,3, beta-1,4, and/or beta-1,6 bonds as the main linkages.  相似文献   

19.
The filamentous fungus Penicillium italicum, grown in a defined liquid medium, produced beta-1,3-glucanase, which remained essentially bound to the cells, and beta-1,6-glucanase, an essentially extracellular enzyme. When glucose was depleted from the medium, when a limited concentration of glucose (0.2%) was maintained, or when the carbon source was galactose (3%) or lactose (3%), a significant increase in the specific activity of beta-1,3-glucanase, in cell extracts, took place. This was paralleled by a very slow rate of growth, and under glucose limitation, the appearance of beta-1,3-glucanase in the medium was also observed. On the other hand, when an excess of glucose, fructose, or sucrose was present, the specific activity remained constant and active growth was promoted. Laminarin, cellobiose, gentiobiose, and isolated Penicillium italicum walls were not capable of significantly inducing beta-1,3-glucanase synthesis to a level beyond that attained by glucose limitation. A similar behavior was observed for beta-1,6-glucanase. beta-1,3-Glucanase and beta-1,6-glucanase are therefore constitutive enzymes subjected to catabolite repression. The results are discussed in the context of the possible functions that have been suggested for glucanases and related enzymes.  相似文献   

20.
The biocontrol agent Trichoderma harzianum IMI206040 secretes beta-1,3-glucanases in the presence of different glucose polymers and fungal cell walls. The level of beta-1,3-glucanase activity secreted was found to be proportional to the amount of glucan present in the inducer. The fungus produces at least seven extracellular beta-1,3-glucanases upon induction with laminarin, a soluble beta-1,3-glucan. The molecular weights of five of these enzymes fall in the range from 60,000 to 80,000, and their pIs are 5.0 to 6.8. In addition, a 35-kDa protein with a pI of 5.5 and a 39-kDa protein are also secreted. Glucose appears to inhibit the formation of all of the inducible beta-1,3-glucanases detected. A 77-kDa glucanase was partially purified from the laminarin culture filtrate. This enzyme is glycosylated and belongs to the exo-beta-1,3-glucanase group. The properties of this complex group of enzymes suggest that the enzymes might play different roles in host cell wall lysis during mycoparasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号