首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The characteristics of the Ah receptor from rat liver were investigated following the incubation of cytosol with [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) under various conditions, and using DEAE- and DNA-Sepharose chromatography and sucrose density gradient centrifugation. These studies indicated that the Ah receptor can exist in three distinct forms in vitro that are dependent on the presence or absence of TCDD and the duration and temperature of incubation. The unoccupied receptor was distinguished by its elution from DEAE-Sepharose columns at 0.20-0.23 M NaCl and lack of affinity for DNA-Sepharose. Following the incubation of the unoccupied receptor with [3H]TCDD, two occupied forms were distinguished based on their overall surface charges and affinities for DNA. One of these forms was predominant following short incubations (2 h) with [3H]TCDD at a low temperature (0 degree C) and was characterized by having the same elution profile on DEAE-Sepharose as the unoccupied form, but demonstrated some affinity for DNA. Another occupied form was predominant following an incubation for a longer time (20 h, 0 degree C) or at an elevated temperature (2 h, 20 degrees C). This form had an overall surface charge that was less negative and a greater affinity for DNA. These changes in receptor characteristics were dependent on the presence of TCDD and were not accompanied by apparent changes in the sedimentation coefficients of the two occupied forms. Anion exchange chromatography of the [3H]TCDD-receptor complex extracted from hepatic nuclei of [3H]TCDD-treated rats indicated that the ligand-induced change of the unoccupied receptor to a less negatively charged form had occurred in vivo. These results indicated a biochemical heterogeneity of the Ah receptor and suggested the occurrence of a ligand- and temperature-dependent transformation process in vivo and in vitro.  相似文献   

2.
The theoretical background and practical approaches for studying ligand-receptor (protein) binding by solid phase microextraction (SPME) are investigated, along with methods for simultaneous calculation of receptor, free, and total ligand concentrations. With the introduction of new extraction phases (restricted access materials, molecularly imprinted polymers, and immobilized antibodies), SPME allows better separation of small molecules of ligand from larger molecules of receptor, and improved accuracy. This sample preparation method based on nonexhaustive extraction is well suited as a general method to study and quantify systems involving multiple equilibriums, with significant advantages over currently used methods. SPME was used previously for the determination of protein binding constants, but only with conventional extraction phases and in simple cases, with a 1:1 combination ratio between the ligand and the receptor or when negligible depletion conditions were met. The new theoretical approach presented in this study allows the quantification of any binding equilibrium, regardless of the extent of depletion. Restricted-access particles are used as extraction phase, and if the amount of receptor is limited, selected regions of the binding curve may be obtained using a single sample, with a volume as low as 10 muL. The equations developed here are simple and independent of the analytical method used for the quantification of the amount of ligand. Three different practical approaches are presented: the method of multiple standard solutions, the method of successive extractions from the same sample and the method of successive additions to the same sample. The usefulness of this novel approach is demonstrated by using it to determine the binding parameters of some selected drugs to human serum albumin. These parameters are subsequently used to calculate albumin, free drug, and total drug concentrations from unknown mixtures. The results are in good agreement with previously published data. Quantification of the amount of ligand extracted by SPME is done by liquid chromatography coupled with tandem mass spectrometry.  相似文献   

3.
Stimulation of cell behavioral functions by ligand/receptor binding can be accomplished in autocrine fashion, where cells secrete ligand capable of binding to receptors on their own surfaces. This proximal secretion of autocrine ligands near the surface receptors on the secreting cell suggests that control of these systems by inhibitors of receptor/ligand binding may be more difficult than for systems involving exogenous ligands. Hence, it is of interest to predict the conditions under which successful inhibition of cell receptor binding by the autocrine ligand can be expected. Previous theoretical work using a compartmentalized model for autocrine cells has elucidated the conditions under which addition of solution decoys for the autocrine ligand can interrupt cell receptor/ligand binding via competitive binding of the secreted molecules (Forsten, K. E., and D. A. Lauffenburger. 1992. Biophys. J. 61:1-12.) We now apply a similar modeling approach to examine the addition of solution blockers targeted against the cell receptor. Comparison of the two alternative inhibition strategies reveals that a significantly lower concentration of receptor blockers, compared to ligand decoys, will obtain a high degree of inhibition. The more direct interruption scheme characteristic of the receptor blockers may make them a preferred strategy when feasible.  相似文献   

4.
D A Ray  J A Oka  P H Weigel 《Biochemistry》1986,25(20):6097-6103
When digitonin is used to expose intracellular galactosyl (Gal) receptors in isolated rat hepatocytes, only about half of the binding activity for 125I-asialoorosomucoid (ASOR) is found as compared to cells solubilized with Triton X-100. The increased ligand binding in the presence of detergent is not due to a decrease in Kd but could be due either to an increase in the number of ASORs bound per receptor or to exposure of additional receptors. Several experiments support the former explanation. No additional activity is exposed even when 80% of the total cell protein is solubilized with 0.4% digitonin. It is, therefore, unlikely that receptors are in intracellular compartments not permeabilized by digitonin and inaccessible to 125I-ASOR. Digitonin-treated cells are not solubilized by Triton X-100 if they are first treated with glutaraldehyde under conditions that retain specific binding activity. 125I-ASOR binding to these permeabilized/fixed cells increases about 2-fold in the presence of Triton X-100 and a variety of other detergents (e.g., Triton X-114, Nonidet P-40, Brij-58, and octyl glucoside) but not with the Tween series, saponin, or other detergents. When these fixed cells are washed to remove detergent, 125I-ASOR binding decreases almost to the initial level. Affinity-purified Gal receptor linked to Sepharose 4B binds approximately twice as much 125I-ASOR in the presence of Triton X-100 as in its absence. The results suggest that the increase in Gal receptor activity in the presence of nonionic detergents is due to an increase in the valency of the receptor rather than to exposure of additional receptors.  相似文献   

5.
6.
Ligand binding and activation of the Ah receptor   总被引:2,自引:0,他引:2  
  相似文献   

7.
Incubation of radiolabeled, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF),1,2,3,7,8-pentachlorodibenzo-p-dioxin(PeCDD), 1,2,3,7,8-pentachlorodibenzofuran (PeCDF), 1,2,7,8-TCDF, and 2,3,7-trichlorodibenzo-p-dioxin (TrCDD) with rat hepatic cytosol for 2 h at 0 degrees C gave liganded aryl hydrocarbon (Ah) receptor complexes which were indistinguishable as determined by velocity sedimentation analysis and DNA-Sepharose column chromatography. Incubation of the cytosol plus the different radioligands for 2 h at 20 degrees C resulted in the formation of Ah receptor complexes which exhibited increased retention times on DNA-Sepharose columns. It was apparent that the amount of specifically bound Ah receptor complex or the levels of the transformed Ah receptor complex which eluted from the column with 0.2-0.3 M salt were dependent on the structure of the radioligand. For example, after incubation for 2 h at 20 degrees C the overall yields of the specifically bound transformed Ah receptor complex were 3.4, 2.0, 1.2, 1.9, 0.3, and 0.1%, respectively, using 2,3,7,8-TCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 1,2,7,8-TCDF, and 2,3,7,8-TrCDD as radioligands. A more quantitative measure of the structure-dependent transformation of the liganded cytosolic Ah receptor complex was determined using a gel retardation assay with a consensus synthetic dioxin-responsive element (DRE) (26-mer, duplex). The EC50 values obtained for the concentration-dependent formation of the retarded DRE-Ah receptor complex using 2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 2,3,7-TrCDD, and 1,2,7,8-TCDF as ligands were 0.26, 0.35, 0.78, 1.75, 27.0, and 220 nM, respectively. The structure-dependent differences in these values were similar to their different potencies as Ah receptor agonists and these data suggest that the structure-dependent transformation of the liganded cytosolic Ah receptor may significantly contribute to the structure-activity relationships observed for 2,3,7,8-TCDD and related compounds.  相似文献   

8.
Binding, endocytosis, and degradation of asialo-orosomucoid (ASOR) mediated by the galactosyl (Gal) receptor were examined in isolated rat hepatocytes in complete media supplemented with an osmolite. The specific binding of 125I-ASOR to cells at 4 degrees C was unaffected by up to 0.4 M sucrose or NaCl. Unlike sucrose or NaCl, mannitol stimulated 125I-ASOR binding at low concentrations but inhibited binding at higher concentrations. Continuous internalization at 37 degrees C, which requires receptor recycling, was completely blocked at 0.2 M sucrose or 0.15 M NaCl, corresponding in each case to a total osmolality of about 550 mmol/kg. This effect was reversed and endocytic function was restored by washing the cells, indicating that cell viability was unaffected. The rate of degradation of internalized 125I-ASOR was also inhibited by increasing sucrose concentrations. This inhibition is due to a block in the delivery of ligand to lysosomes and not an effect on degradation per se. In the presence of 0.2 M sucrose, the rate and extent of endocytosis of surface-bound 125I-ASOR were, respectively, 33.0 +/- 8.1% and 69.4 +/- 10.5% (n = 8) of the control without sucrose. Under these conditions, the dissociation of internalized receptor-ASOR complexes was completely inhibited. When sucrose was added, the effect on the endocytosis of surface-bound 125I-ASOR was virtually immediate. Previous studies showed that about 40% of the surface-bound 125I-ASOR which is internalized can return to the cell surface still bound to receptor (Weigel and Oka: J Biol Chem 259:1150, 1984). If 0.2 M sucrose was added after endocytosis occurred, 125I-ASOR still returned to the cell surface, although the rate and extent of return were inhibited by more than 50%. Interestingly, hyperosmolarity is the only treatment we have found which can reversibly inhibit, although only partially, the endocytosis of surface-bound 125I-ASOR.  相似文献   

9.
10.
N Tran-Quang  N Bernard  Y Higa  R Engler 《FEBS letters》1983,159(1-2):161-166
The binding of [125I]Hpx--heme with the rat hepatic plasma membrane receptor was studied at 37 degrees C as well as different parameters such as plasma membrane concentration, calcium dependence, optimal pH and specific binding. A Scatchard plot revealed the existence of one binding for [125I]Hpx--heme on the isolated liver plasma membrane with a Kd = 3.2 X 10(-8) M.  相似文献   

11.
Lactoperoxidase (LPO) is a member of a large group of mammalian heme peroxidases that include myeloperoxidase (MPO), eosinophil peroxidase (EPO) and thyroid peroxidase (TPO). The LPO is found in exocrine secretions including milk. It is responsible for the inactivation of a wide range of micro-organisms and hence, is an important component of defense mechanism in the body. With the help of hydrogen peroxide, it catalyzes the oxidation of halides, pseudohalides and organic aromatic molecules. Historically, LPO was isolated in 1943, nearly seventy years ago but its three-dimensional crystal structure has been elucidated only recently. This review provides various details of this protein from its discovery to understanding its structure, function and applications. In order to highlight species dependent variations in the structure and function of LPO, a detailed comparison of sequence, structure and function of LPO from various species have been made. The structural basis of ligand binding and distinctions in the modes of binding of substrates and inhibitors have been analyzed extensively.  相似文献   

12.
Thyroidectomy of rats confers some protection, by an unknown mechanism, from the weight loss, immunotoxicity, and mortality induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Since at least some of the many effects of TCDD appear to be mediated by the Ah receptor, perhaps the thyroid plays a role in regulation of this receptor, thereby modifying the toxicity of TCDD. We tested this hypothesis by comparing TCDD-binding characteristics of the receptor and hepatic enzyme inducibility by TCDD (a receptor-mediated response) in thyroidectomized (ThX) and euthyroid rats. There were no significant differences in levels of TCDD binding in vitro in hepatic cytosol, in receptor affinity, nor in the molecular size of the TCDD-bound receptor in untreated ThX rats compared to controls fed ad libitum or pair-fed. Total hepatic cytochrome P-450 (P-450) levels and NADPH-menadione oxidoreductase (NMOR) activity were unaffected by thyroid status, whereas 7-ethoxycoumarin O-deethylase (ECOD) activity was approx. 50% lower in ThX animals than in ad libitum or pair-fed controls. At 3 and 10 days after TCDD administration (10 micrograms/kg, i.p.), P-450 concentrations and NMOR and ECOD activities were induced by approximately the same proportions in ThX and pair-fed intact rats; however, the absolute levels of the induced activities were lower in ThX than in pair-fed controls. It was concluded that hypothyroidism does not regulate Ah receptor concentration or function in the liver. Therefore, the modulation of TCDD toxicity by hypothyroidism appears not to involve changes in the hepatic Ah receptor.  相似文献   

13.
14.
These studies investigated the effects of various serine proteinase inhibitors and substrates on the TCDD-binding capacity of the rat hepatic Ah receptor. TCDD binding to the Ah receptor was inhibited by serine proteinase inhibitors phenylmethylsulfonyl fluoride (PMSF), tosyl-lysine chloromethyl ketone (TosLysCH2Cl), tosylamide-phenylethyl chloromethyl ketone (TosPheCH2Cl) and substrates tosyl-L-arginine methyl ester (TosArgOMe) and D-tryptophan methyl ester (TrpOMe). The order of potency was TosPheCH2Cl greater than TosLysCH2Cl much greater than PMSF approximately equal to TosArgOMe approximately equal to TrpOMe. Reactivity of the chloromethyl ketones with sulfhydryl groups was suggested by their steep inhibition curves above the concentration of nonprotein sulfhydryl groups, and the partial mitigation of inhibition by 1 mM dithiothreitol. Inhibition by these reagents was irreversible, while that by TosArgOMe and TrpOMe was completely reversible by gel filtration. The mechanism of inhibition by TosArgOMe and TrpOMe was formally competitive, with inhibition constants similar to those reported in steroid hormone receptor systems. Neither inhibitors nor substrates displaced previously bound TCDD.  相似文献   

15.
16.
LDL receptor family: isolation, production, and ligand binding analysis   总被引:1,自引:0,他引:1  
Members of the low density lipoprotein receptor gene family have recently received particular attention because of their involvement not only in lipoprotein transport, but also in signal transduction pathways. The main characteristic feature of this protein group is their cysteine-rich ligand binding domain, which is able to bind many unrelated proteins, such as apolipoproteins, proteases, and protease/inhibitor complexes, signaling molecules such as reelin, and several other groups of proteins. The main challenges of studying these proteins in vitro are their extremely high content of disulfide bridges and the detergent-sensibility of their classical ligands, i.e, lipoproteins. Here, we describe generally applicable procedures for the analysis of these receptors. We present an outline of established methodology for their isolation and visualization, the production of recombinant fragments, in particular of soluble ligand binding domains, and we describe standard procedures for the analysis of the functionality of the receptors and recombinant receptor ligand binding fragments, respectively.  相似文献   

17.
In cytosol, the rat hepatic Ah receptor (AhR) appears to exist in two distinct forms (AhRα, AhRβ) in similar concentration. The binding of ligand (2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) to AhRα requires the receptor be in its oligomeric 8–10 to S conformation (bound to other protein subunits), while ligand binding to AhRβ can occur with the dissociated 5–6 S form. Occupancy of AhRβ by ligand (TCDD) protects it from salt-dependent inactivation; AhRβ is not inactivated by high salt conditions. The addition of molybdate to cytosol during tissue homogenization stabilized AhRα against salt-dependent inactivation and subunit dissociation but did not prevent dissociation of AhRβ by high salt. Although the presence of molybdate appears to stabilize AhRα in its oligomeric 8–10 S, it had no significant effect on the overall amount of TCDD:AhR complex which bound to its specific DNA recognition site, the dioxin responsive element (DRE). These results suggest that AhRα, unlike AhRβ, is either unable to transform or bind to the DRE with high affinity.  相似文献   

18.
The rat liver asialoglycoprotein receptor consists of two typesof subunits, a predominant polypeptide designated rat hepaticlectin 1 (RHL-1) and a minor polypeptide, RHL-2/3, that comesin two differentially glycosylated forms. The exact stoichiometryand arrangement of the subunits in the RHL oligomer are notknown. The carbohydrate-recognition domain of RHL-2/ has beenprepared by limited proteolysis of the liver receptor so thatits properties can be compared with those of the correspondingdomain of RHL-1 previously produced in a bacterial expressionsystem. Binding studies indicate that while RHL-1 binds N-acetylgalactosaminewith approximately 60-fold higher affinity than it binds galactose,RHL-2/ has only 2-fold selectivity for N-acetylgalactosamine.In general, the pattern of monosaccharide-binding specificityfor RHL-2/ is similar to RHL-1, but the discrimination of varioussugars relative to galactose is reduced substantially. Limitedproteolysis and crosslinking studies demonstrate that RHL- 2/is easily removed from the RHL oligomer in detergent solutionand that RHL-1 remains at least trimeric following removal ofRHL-2/. These studies suggest that RHL-1 forms a ligand-bindingcore while RHL-2/ acts more as an accessory subunit contributingto selective binding of certain oligosaccharide structures. asialoglycoprotein receptor binding carbohydrate recognition lectin proteolysis  相似文献   

19.
Tritiated porcine alpha-neo-endorphin has been prepared from its corresponding iodinated analog. The iodinated analog (diiodotyrosine at position 1) was synthesized, along with its non-iodinated counterpart, by the solid-phase method. Catalytic exchange of this iodinated analog in the presence of tritium yielded tritiated porcine alpha-neo-endorphin having a specific activity of 45.5 Ci/mmole. Both the native, iodinated and tritiated alpha-neo-endorphin analogs were shown to be homogenous by chromatography on carboxymethylcellulose, paper chromatography, paper electrophoresis, high performance liquid chromatography and amino acid analysis. For the first time binding of alpha-neo-endorphin to rat membrane preparations is described using [3H2-Tyr1]alpha-neo-endorphin as the ligand. The binding is time-dependent and saturable with respect to alpha-neo-endorphin. Scatchard analysis was bi-phasic with KDs of 0.20 and 3.75 nM. Displacement binding studies indicate that the receptor for alpha-neo-endorphin has "kappa" and possibly "epsilon" binding characteristics.  相似文献   

20.
Steric effects can influence the binding of a cell surface receptor to a multivalent ligand. To account for steric effects arising from the size of a receptor and from the spacing of binding sites on a ligand, we extend a standard mathematical model for ligand-receptor interactions by introducing a steric hindrance factor. This factor gives the fraction of unbound ligand sites that are accessible to receptors, and thus available for binding, as a function of ligand site occupancy. We derive expressions for the steric hindrance factor for various cases in which the receptor covers a compact region on the ligand surface and the ligand expresses sites that are distributed regularly or randomly in one or two dimensions. These expressions are relevant for ligands such as linear polymers, proteins, and viruses. We also present numerical algorithms that can be used to calculate steric hindrance factors for other cases. These theoretical results allow us to quantify the effects of steric hindrance on ligand-receptor kinetics and equilibria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号