首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosol from rodent liver was exposed to a variety of sulfhydryl-modifying reagents to determine if the cytosolic Ah receptor contained reactive sulfhydryl groups that were essential for preservation of the receptor's ligand binding function. At a 2 mM concentration in rat liver cytosol, all sulfhydryl-modifying reagents tested (except iodoacetamide) both blocked binding of [3H]2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to unoccupied receptor and caused release of [3H]TCDD from receptor sites that had been labeled with [3H]TCDD before exposure to the sulfhydryl-modifying reagent. Exposure of cytosol to iodoacetamide before labeling with [3H]TCDD prevented subsequent specific binding of [3H]TCDD, but iodoacetamide was not effective at displacing previously bound [3H]TCDD from the Ah receptor. The mercurial reagents, mersalyl, mercuric chloride, and p-hydroxymercuribenzoate, were more effective at releasing bound [3H]TCDD from previously labeled sites than were alkylating agents (iodoacetamide, N-ethylmaleimide) or the disulfide compound 5,5'-dithiobis(2-nitrobenzoate). Presence of bound [3H]TCDD substantially protected the Ah receptor against loss of ligand binding function when the cytosol was exposed to sulfhydryl-modifying reagents. This may indicate that the critical sulfhydryl groups lie in or near the ligand binding site on the receptor. Subtle differences exist between the Ah receptor and the receptors for steroid hormones in response to a spectrum of sulfhydryl-modifying reagents, but the Ah receptor clearly contains a sulfhydryl group (or groups) essential for maintaining the receptor in a state in which it can bind ligands specifically and with high affinity.  相似文献   

2.
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) binds to a specific, high-affinity, low-capacity protein in rat liver cytosol. The TCDD-receptor complex is a large molecule with a Stokes radius of 6.6 nm as determined by gel filtration on calibrated columns. The receptor complex sediments at 5.0 S on glycerol gradients. The calculated molecular weight from the physical parameters was 136 000 and the frictional ratio 1.79.The TCDD-receptor complex binds to DNA-cellulose without preceding heat activation or incubation at high ionic strength. The receptor must first bind TCDD before it can interact with DNA. The DNA-binding ability can be removed from the TCDD receptor by limited proteolysis with trypsin. This treatment does not affect the TCDD-binding site of the receptor. The proteolytic fragment of the TCDD-receptor complex containing the TCDD-binding site but not the ability to bind to DNA appears to be approximately the same size as the native receptor, as judged from chromatography of Sepharose CL-6B and glycerol gradient centrifugation.  相似文献   

3.
These studies investigated the effects of various serine proteinase inhibitors and substrates on the TCDD-binding capacity of the rat hepatic Ah receptor. TCDD binding to the Ah receptor was inhibited by serine proteinase inhibitors phenylmethylsulfonyl fluoride (PMSF), tosyl-lysine chloromethyl ketone (TosLysCH2Cl), tosylamide-phenylethyl chloromethyl ketone (TosPheCH2Cl) and substrates tosyl-L-arginine methyl ester (TosArgOMe) and D-tryptophan methyl ester (TrpOMe). The order of potency was TosPheCH2Cl greater than TosLysCH2Cl much greater than PMSF approximately equal to TosArgOMe approximately equal to TrpOMe. Reactivity of the chloromethyl ketones with sulfhydryl groups was suggested by their steep inhibition curves above the concentration of nonprotein sulfhydryl groups, and the partial mitigation of inhibition by 1 mM dithiothreitol. Inhibition by these reagents was irreversible, while that by TosArgOMe and TrpOMe was completely reversible by gel filtration. The mechanism of inhibition by TosArgOMe and TrpOMe was formally competitive, with inhibition constants similar to those reported in steroid hormone receptor systems. Neither inhibitors nor substrates displaced previously bound TCDD.  相似文献   

4.
Steroid hormone receptors contain a reactive sulfhydryl group (or groups) required for hormone binding. In the present study, the effects of several sulfhydryl-blocking reagents on hormone binding to aporeceptors and hormone x receptor complexes were compared, with the use of preparations of chick oviduct progesterone receptor and intestinal vitamin D receptor. N-Ethylmaleimide inhibited hormone binding to aporeceptors, whereas prior hormone binding protected against inactivation. In contrast, the mercurial reagent mersalyl both inhibited hormone binding to aporeceptors and dissociated hormone x receptor complexes. Complete dissociation of these complexes was achieved within 20 to 30 min at 0 degrees C. This process was a pseudo-first order reaction with a t 1/2 much less than the t 1/2 for hormone dissociation for either receptor at 0 degrees C. Hormone displacement was a general property of mercurial reagents; several organic mercurials as well as HgCl2 were effective. In contrast, sulfhydryl-alkylating agents (maleimides, iodoacetamide) and the disulfide 5,5'-dithiobis(2-nitrobenzoate) were ineffective in displacing bound hormone from either progesterone or vitamin D receptors. Finally, hormone displacement by mersalyl was reversible; addition of excess thiol reagent displaced the bound mersalyl and regenerated hormone binding activity in good yield. This result suggests that mercurial reagents should prove useful in further study of steroid hormone receptors, for example in elution of receptors from steroid-affinity adsorbents.  相似文献   

5.
The in vitro stability of the Ah receptor from rat hepatic cytosol was evaluated by [3H]TCDD binding studies, gel filtration, and sucrose density gradient ultracentrifugation. Thermal inactivation of unoccupied receptor followed first-order kinetics between 5 and 40 degrees C, with an estimated Ea for inactivation of approximately 35 kcal/mol. Protease inhibitors did not reduce and dilution slightly increased the inactivation rate at 20 degrees C. Recovery and 20 degrees C stability decreased with increasing ionic strength. The TCDD-receptor complex was less susceptible to degradation at 20 degrees C, even in the presence of 0.4 M KCl. Specific binding was markedly pH dependent, with maximum recovery at 7.6. Analysis of the pH curve suggested that cysteine sulfhydryl groups may be involved in TCDD binding. Dithiothreitol (1 mM) maximized recovery and 20 degrees C stability, and addition of the thiol largely reactivated binding sites lost from cytosol prepared without it. Removal of low molecular weight components of cytosol by gel filtration resulted in a rapid 20 degrees C inactivation rate that could not be lessened by dithiothreitol. Glycerol (10% v/v) and EDTA (1.5 mM) maximized recovery of specific binding, but both decreased 20 degrees C stability in a concentration-dependent manner. Calcium chloride (4 mM) increased stability at 20 degrees C by approximately 20%, and retarded the characteristic shift in sedimentation coefficient from approximately 9 to approximately 6 S in high-salt sucrose gradients. The fact that sodium molybdate (20 mM) decreased recovery and 20 degrees C stability when dithiothreitol was present but slightly increased stability in its absence suggested an antagonism between the two compounds. Molybdate mitigated the inactivation induced by 0.4 M KCl, an effect which may be related to the observation of dual peaks in molybdate-containing high-salt sucrose gradients. These data indicate that thermal inactivation of the unoccupied rat hepatic Ah receptor primarily may be due to physical rather than enzymatic processes; (ii) sulfhydryl oxidation, removal of low molecular weight cytosolic components, and high ionic strength result in rapid rates of inactivation at 20 degrees C; and (iii) the large degree of protection conferred by TCDD binding implies a very tight ligand-receptor interaction, and as such accords with TCDDs extraordinary potency and persistence in producing its toxic and biochemical effects.  相似文献   

6.
Whether or not alpha- and beta-adrenoreceptors are non-identical binding sites on the same protein is still an open question. We investigated the effects of sulfhydryl reagents and dithiothreitol on the binding of [3H]dihydroalprenolol and [3H]dihydroergocryptine to beta- and alpha-adrenoreceptors of rat liver plasma membranes. Dithiothreitol inhibited the binding of [3H]dihydroalprenolol to the beta-adrenoreceptor, whereas it had no effect on the specific binding of [3H]dihydroergocryptine to the alpha-adrenoreceptor. In contrast, mersalyl, a mercurial SH reagent, readily blocked the alpha-adrenoreceptor and, although to a lesser extent the beta-adrenoreceptor. The interaction of mersalyl with the alpha-adrenoreceptors was almost instantaneous. In contrast, under the same experimental conditions, the inactivation of the beta-adrenoreceptors was much slower (t 1/2 : 7 min). Finally, a marked difference in the accessibility of the SH groups to mersalyl was observed between the alpha- and beta-adrenoreceptors. The presence of 15 microM (-)-epinephrine or 1.5 microM phentolamine was sufficient to prevent the blockade of the alpha-adrenoreceptor by mersalyl, but inactivation of the beta-adrenoreceptor by mersalyl was not modified by 500 microM (-)-epinephrine and was only slightly decreased by 50 microM (-)-propranolol. Thus, the alpha- and beta-adrenoreceptors from rat liver plasma membranes exhibited biochemical differences which may be interpreted in favor of their molecular individuality.  相似文献   

7.
The differential effects of sulfhydryl (SH)-blocking agents on hormone and DNA binding by the chick oviduct progesterone receptor were investigated. Previous studies have demonstrated inhibition of steroid-receptor interaction by SH-blocking agents and protection against inhibition by bound hormone. The present results indicate that the SH group required for steroid binding is within or near the hormone-binding site itself, and that a second SH group (or groups) is involved in the binding of receptor to DNA. Three findings relate to the site of action of SH-blocking agents on hormone binding. First, glycerol decreased the rate of hormone dissociation and the rate of hormone displacement by mercurial reagents by 75 to 90%. Second, mercurial reagents displaced [3H]progesterone bound to the mero-receptor, a Mr 23,000 proteolytic fragment containing the hormone-binding site, but not the site of interaction with DNA. Third, hormone displacement was still present after a 10,000-fold purification of the progesterone receptor. Mercurial reagents also inhibited binding of progesterone receptor to DNA, whereas the SH-alkylating agents N-ethylmaleimide and iodoacetamide had no effect. It is likely that distinct sulfhydryl groups are required for steroid receptor interaction with hormone and with DNA, since brief treatment with mercurial reagents blocked DNA binding, but caused only a slight displacement of bound hormone. The SH group required for hormone binding probably lies within or near the hormone-binding site, is sensitive to mercurials, alkylating agents, and 5,5′-dithiobis(2-nitrobenzoate) (DTNB), and is protected by bound hormone. The SH group required for DNA binding, in contrast, is sensitive to mercurials but not to alkylating agents, is only partially sensitive to DTNB, and is not protected by bound hormone.  相似文献   

8.
The DNA-binding properties of the receptor for 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) were investigated using chromatography on DNA-cellulose columns. A maximal binding of about 40% of the total receptor complex to DNA-cellulose was observed. In order to interact with DNA, the receptor must first bind TCDD. A heat-activation step followed by gel permeation chromatography using Sephadex G-25 increased the binding of the cytosolic receptor to DNA. The DNA-binding ability of the receptor was almost lost following mild proteolysis using trypsin or alpha-chymotrypsin, although these treatments did not reduce its ligand binding capacity and had no apparent effect on its size. Furthermore, pre-treatment of the DNA-cellulose column with an intercalating drug, ethidium bromide, resulted in inhibition of the binding of the TCDD-receptor complex to DNA, indicating that not only electrostatic interactions but also the configuration of DNA are of importance in receptor-DNA interactions.  相似文献   

9.
10.
Guido Zimmer 《BBA》1977,461(2):268-273
Dithionitrobenzoate has been used to titrate sulfhydryl groups of rat liver mitochondria in glutamate buffer, pH 7.4.Reaction with oligomycin and different SH reagents preceded the SH titration. Under these conditions it was found that 2-mercaptopropionylglycine and N-ethylmaleimide reacted in an oligomycin-sensitive manner, so that the control values (in the absence of SH reagent) were obtained.Similar concentrations of mersalyl and of N-(N-acetyl-4-sulfamoylphenyl) maleimide, in the presence of oligomycin, enhanced reactivity toward Nbs2.The concentration range of oligomycin-sensitive SH groups was thus defined between approx. 5 and 9 nmol reagent/mg mitochondrial protein.In this way, a differentiation between SH groups, which are implicated in phosphate transport and those, which react in an oligomycin-sensitive manner, and which are probably connected with the coupling mechanism, was achieved.  相似文献   

11.
The effects of specific sulfhydryl reagents, N-ethylmaleimide (NEM), p-chloromercuribenzoic acid (PCMB) and 5-5'-dithiobis(2-nitrobenzoic acid) (DTNB), were tested on the vasoactive intestinal peptide (VIP) receptor binding capacity of the human superficial melanoma-derived IGR39 cells. On intact cell monolayers NEM and PCMB inhibit the specific [125I]VIP binding in a time and dose-dependent manner while DTNB has no effect at any concentration tested. Inhibitory effects of NEM and PCMB on high and low affinity VIP receptor are not identical. With NEM-treated cells, only low affinity sites remained accessible to the ligand. Their affinity constant is not modified. With PCMB-treated cells, the binding capacity of high affinity sites is reduced by 56% while the binding capacity of low affinity sites is not significantly affected. For both types of binding sites, the affinity constants remain in the same range of that of untreated cells. On cells made permeable by lysophosphatidylcholine, DTNB is able to inhibit the specific [125I]VIP binding in a time and dose-dependent manner. The three sulfhydryl reagents stabilize the preformed [125I]VIP receptor complex whose dissociation in the presence of native VIP is significantly reduced. Labeling of free SH groups with tritiated NEM after preincubation of cells with DTNB and VIP made possible the characterization of reacting SH groups which probably belong to the receptor. Taken together, these data allow us to define three classes of sulfhydryl groups. In addition, it is shown that high and low affinity sites have different sensibility to sulfhydryl reagents.  相似文献   

12.
The water permeability of human erythrocytes has been monitored by nuclear magnetic resonance (NMR) before and after treatment of the cells with various sulfhydryl reagents. Preincubation of the cells with N-ethylmaleimide (NEM), a non-inhibitory sulfhydryl reagent, results in a faster and more sensitive inhibition of water exchange by mercurials. The inhibition of water exchange by p-chloromercuribenzene sulfonate (PCMBS) was maximal at a binding of approximately 10 nmol PCMBS per mg protein when non-specific sulfhydryl groups are blocked by NEM. Inhibition by PCMBS has been correlated with the binding of 203Hg to erythrocyte membrane proteins. A significant binding of label to band 3 and the polypeptides in band 4.5 occurs, with approximately 1 mol of mercurial bound per mol of protein. Inhibition of water transport by sulfhydryl reagents does not induce major morphological changes in the cells as assessed by freeze-fracture and scanning electron microscopy.  相似文献   

13.
The volume of aqueous solvent present during subcellular fractionation of mouse hepatoma (Hepa 1c1c7) cells influences the distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) receptors between the nuclear and cytosolic fractions. When the effects of dilution are minimized, at least 80% of the receptors associate with nuclei. The receptors bind relatively strongly to nuclei, as measured by their release by KCl. TCDD-receptor complexes bind more strongly to nuclei than do unoccupied receptors. A temperature-dependent event further enhances the binding of TCDD-receptor complexes to nuclei. A class of variant cells contains receptors which bind relatively weakly to nuclei; this defect accounts for the variant phenotype. We conclude that, in the intact cell, TCDD receptors are located within the nucleus and that the temperature-dependent event in the induction of cytochrome P1-450 gene expression is one which strengthens the binding of the TCDD-receptor complex to chromatin.  相似文献   

14.
Abstract

Sulfhydryl (SH) reagents are known to influence the characteristics of many ligand-receptor systems. The SH reagent N-ethylmaleimide has been demonstrated to interact with EGF receptors, and to inhibit EGF receptor kinase activity. The data presented in this paper concern the effect of SH reagents on two intriguing features of the EGF receptor system, namely the presence of low and high affinity EGF binding sites, and the interaction of EGF receptors with the cytoskeleton. SH reagents were observed to induce a disappearance of high, but not low, affinity EGF receptors from the cell surface, and an increase in receptor-cytoskeleton interaction. Comparison of the effects of membrane-permeant and membrane-impermeant SH reagents on wild type and structurally modified EGF receptors suggested that sulfhydryl groups on the cytoplasmic, rather than the extracellular, receptor domain are involved. This indicates that the cytoplasmic domain of the EGF receptor plays a role in the high affinity binding of EGF, and in the interaction of EGF receptors with the cytoskeleton. Experiments with an anti-EGF receptor antibody that specifically blocks the binding of EGF to low affinity receptors indicated that EGF induces a shift in the EGF receptor from low to high affinity. SH reagents probably affect EGF binding by inhibiting this EGF-induced receptor conversion.  相似文献   

15.
Whether or not α- and β-adrenoreceptors are non-identical binding sites on the same protein is still an open question. We investigated the effects of sulfhydryl reagents and dithiothreitol on the binding of [3H]dihydroalprenolol and [3H]dihydroergocryptine to β- and α-adrenoreceptors of rat liver plasma membranes. Dithiothreitol inhibited the binding of [3H]dihydroalprenolol to the β-adrenoreceptor, whereas it had no effect on the specific binding of [3H]dihydroergocryptine to the α-adrenoreceptor. In contrast, mersalyl, a mercurial SH reagent, readily blocked the α-adrenoreceptor and, although to a lesser extent, the β-adrenoreceptor. The interaction of mersalyl with the α-adrenoreceptors was almost instantaneous. In contrast, under the same experimental conditions, the inactivation of the β-adrenoreceptors was much slower (t12:7 min). Finally, a marked difference in the accessibility of the SH groups to mersalyl was observed between the α- and β-adrenoceptors. The presence of 15 μM (?)-epinephrine or 1.5 μM phentolamine was sufficient to prevent the blockade of the α-adrenoreceptor by mersalyl, but inactivation of the β-adrenoreceptor by mersalyl was not modified by 500 μM (?)-epinephrine and was only slightly decreased by 50 μM (?)-propranolol. Thus, the α- and β-adrenoreceptors from rat liver plasma membranes exhibited biochemical differences which may be interpreted in favor of their molecular individuality.  相似文献   

16.
DNA binding of chick progesterone receptor B form (PRB) has been examined and compared to that of the A form (PRA). We found that the elution profiles of the two receptors overlap on DNA-cellulose columns. Both PRA or PRB could bind to plasmid DNA equivalently as assayed by sedimentation velocity studies. However, DNA-binding activity of the two receptor forms showed differential sensitivity to reducing agents and to sulfhydryl (SH) reactive reagents. Reducing agents stabilized DNA-binding activity of PRA more efficiently than they stabilized PRB. Moreover, removal of reducing agents from receptor preparations caused preferential loss of DNA binding by PRB compared to the PRA. DNA-binding activity of PRA was readily destroyed by sulfhydryl modifying reagents such as N-ethylmaleimide and iodoacetamide while PRB was 3-4 times less sensitive to these reagents. We conclude the DNA-binding activity of PRB is less stable due to altered accessibility of SH groups despite the amino acid sequence identity of the DNA-binding domains of PRA and PRB.  相似文献   

17.
The changes in water diffusion across human erythrocyte membranes following exposure to various inhibitors and proteolytic enzymes have been studied on isolated erythrocytes suspended in isotonic buffered solutions. An important issue was to investigate whether the sulfhydryl reacting reagents that have been applied in osmotic experiments showed similar effects on diffusional permeability. It was found that mercurials, including mersalyl, were the only sulfhydryl reacting reagents that were efficient inhibitors. Under optimal conditions a similar degree of inhibition (around 45%) was found with all mercury-containing sulfhydryl reagents. Other reagents, including the sulfhydryl reagent DTNB, phloretin, or H2DIDS, the specific inhibitor of the anion transport system in erythrocyte membrane, did not appear to inhibit significantly the diffusional permeability. No changes in water diffusion were noticed after exposure to erythrocytes to trypsin and chymotrypsin. A new kind of experiments was that in which the effects of exposure of erythrocytes to two or more agents were studied. It was found that none of the chemical manipulations of membranes that did not affect water diffusion hampered the inhibitory action of mercurials. These findings show that the SH groups involved in water diffusion across erythrocyte membrane do not react with any of the other SH reagents aside from mercurials and that the molecular mechanism of water transport is not affected by chymotryptic cleavage of band 3 protein into the 60 and 35 kD fragments. The NMR method appears as a useful tool for studying changes in water diffusion in erythrocyte membranes following various chemical manipulations of the membranes with the aim of locating the water channel.  相似文献   

18.
The existence of a high-affinity, low-capacity 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-binding species was demonstrated in cytosol from rat thymus. It was sensitive to heat and to pronase, trypsin or chymotrypsin but not to DNAase or RNAase, indicating that it was a protein. An excess of unlabelled 2,3,7,8-tetrachlorodibenzofuran or β-naphthoflavone displaced [3H]TCDD from the binder whereas phenobarbital, pregnenolone-16-α-carbonitrile or dexamethasone did not compete. Using a dextra-coated charcoal assay, the apparent dissociation constant (Kd) of the [3H]TCDD-binder complex was determined to 0.36 nM and the apparent maximum amount of binding sites (Bmax) to 68 fmol/mg of cytosolic protein. When analyzed by sucrose density-gradient centrifugation at high ionic strength, the [3H]TCDD-binder complex sedimented at 4?5 S; at low ionic strength the complex sedimented more rapidly, probably due to aggregation. All these data support the interpretation that the demonstrated cytosolic TCDD-binder represents the receptor protein for TCDD, as previously described for rat and mouse liver. Following intravenous administration of [3H]TCDD, a low-capacity [3H]TCDD-macromolecule complex was extractable from thymic cell neuclei; this complex behaved identically to the cytosolic [3H]TCDD-receptor complex when exposed to heat or to hydrolytic enzymes and was therefore alos identified as a protein. The nuclear [3H]TCDD-protein complex sedimented at 4–5 S at high ionic strength. Furthermore, a maximum uptake of [3H]TCDD in thymic nuclei was observed simultaneously with a decline in cytosolic radioactivity (at 3 h post-injection). These findings suggest that the nuclear [3H]TCDD-protein complex represented [3H]TCDD-receptor complex translocated from the cytoplasm. In conclusion, the rat thymus contains a cytosolic TCDD receptor at a concentration similar to that of the rat hepatic receptor. However, in vivo experiments showed that the nuclear uptake of [3H]TCDD (expressed as dpm/mg GNA) in the thymus was only about 6% of that in liver. Further studies are needed for an understanding of the mechanism behind this discrepancy.  相似文献   

19.
20.
A M Traish  D F Williams  H H Wotiz 《Steroids》1989,53(1-2):169-193
The effects of sucrose on androgen binding to its receptor were investigated. Sucrose decreased the rate of thermal inactivation of unoccupied and occupied androgen receptor (AR) and the rates of [3H]5 alpha-dihydrotestosterone [( 3H]DHT) dissociation from both activated and nonactivated AR complexes. Binding of [3H]DHT to AR in vivo, or in intact cells at 37 degrees C, caused reduction of [3H]DHT dissociation from cytosolic and nuclear complexes, as compared to in vitro labeled receptor complexes. Further, exposure of these complexes to sucrose at 0 degrees C caused an additional reduction of dissociation rates. Thus, the decrease of [3H]DHT dissociation induced by sucrose is independent of the reaction that reduces DHT dissociation from activated and transformed AR. Sucrose also reduced the ability of mersalyl acid to inactivate AR complexes. This effect of sucrose was markedly diminished in the presence of 2M urea. Sucrose did not significantly affect the association rate, sedimentation properties, or nuclear binding ability of AR complexes, but it did decrease the equilibrium dissociation constant. Other monosaccharides and disaccharides also stabilized AR. These data suggest that sucrose induces conformational changes in the steroid binding domain of androgen receptor, thereby reducing the rates of inactivation, steroid dissociation, and the accessibility of sulfhydryl groups to mersalyl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号