首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Eight Zymomonas strains were compared with respect to their sucrose hydrolysing activity and subsequent ethanol, levan and sorbitol formation. The ethanol yields obtained were within narrow limits, 0.40–0.43 g·g-1 of sucrose. The distribution of by-products differed significantly between the strains tested. A low sucrose hydrolysis rate seemed to be associated with the formation of levan and a high sucrose hydrolysis rate with the formation of sorbitol through accumulation of monomeric sugars. Fructo-oligomers consisting of two fructose and one glucose unit represented the greatest loss of sucrose in the fermentation conditions used.  相似文献   

2.
The influence of substrate composition on the yield, nature, and composition of exopolysaccharides (EPS) produced by the food-grade strain Gluconacetobacter xylinus I-2281 was investigated during controlled cultivations on mixed substrates containing acetate and either glucose, sucrose, or fructose. Enzymatic activity analysis and acid hydrolysis revealed that two EPS, gluconacetan and levan, were produced by G. xylinus. In contrast to other acetic acid strains, no exocellulose formation has been measured. Considerable differences in metabolite yields have been observed with regard to the carbohydrate source. It was shown that glucose was inadequate for EPS production since most of this substrate (0.84 C-mol/C-mol) was oxidized into gluconic acid, 2-ketogluconic acid, and 5-ketogluconic acid. In contrast, sucrose and fructose supported a 0.35 C-mol/C-mol gluconacetan yield. In addition, growing G. xylinus on sucrose produced a 0.07 C-mol/C-mol levan yield. The composition of EPS remained unchanged during the course of the fermentations. Levan sucrase activity was found to be mainly membrane associated. In addition to levan production, an analysis of levan sucrase's activity also explained the formation of glucose oxides during fermentation on sucrose through the release of glucose. The biosynthetic pathway of gluconacetan synthesis has also been explored. Although the activity of key enzymes showed large differences to be a function of the carbon source, the ratio of their activities remained similar from one carbon source to another and corresponded to the ratio of precursor needs as deduced from the gluconacetan composition.  相似文献   

3.
The influence of substrate composition on the yield, nature, and composition of exopolysaccharides (EPS) produced by the food-grade strain Gluconacetobacter xylinus I-2281 was investigated during controlled cultivations on mixed substrates containing acetate and either glucose, sucrose, or fructose. Enzymatic activity analysis and acid hydrolysis revealed that two EPS, gluconacetan and levan, were produced by G. xylinus. In contrast to other acetic acid strains, no exocellulose formation has been measured. Considerable differences in metabolite yields have been observed with regard to the carbohydrate source. It was shown that glucose was inadequate for EPS production since most of this substrate (0.84 C-mol/C-mol) was oxidized into gluconic acid, 2-ketogluconic acid, and 5-ketogluconic acid. In contrast, sucrose and fructose supported a 0.35 C-mol/C-mol gluconacetan yield. In addition, growing G. xylinus on sucrose produced a 0.07 C-mol/C-mol levan yield. The composition of EPS remained unchanged during the course of the fermentations. Levan sucrase activity was found to be mainly membrane associated. In addition to levan production, an analysis of levan sucrase's activity also explained the formation of glucose oxides during fermentation on sucrose through the release of glucose. The biosynthetic pathway of gluconacetan synthesis has also been explored. Although the activity of key enzymes showed large differences to be a function of the carbon source, the ratio of their activities remained similar from one carbon source to another and corresponded to the ratio of precursor needs as deduced from the gluconacetan composition.  相似文献   

4.
An investigation was conducted to isolate, and characterise the extracellular sucrases of Zymomonas mobilis UQM 2716. Levansucrase (EC 2.4.1.10) was the only extracellular sucrase produced by this organism. This enzyme was responsible for sucrose hydrolysis, levan formation, and oligosaccharide production. It had a molecular mass of 98 kDa, a Michaelis constant (K m) of 64 mm, and a pH optimum of 5.5. It was inhibited by glucose, but not by fructose, ethanol, sorbitol, NaCl, TRIS or ethylenediaminetetraacetic acid (EDTA). The formation of levan was the principal reaction catalysed by this enzyme at low temperatures. However, levan formation was thermolabile, being irreversibly lost when levansucrase was heated to 35°C. S This did not effect sucrose hydrolysis or oligosaccharide formation, which were optimal at 45°C. Sucrose concentration greatly influenced the type of acceptor molecule used in the transfructosylation reactions catalysed by levansucrase. At low sucrose concentration, the predominant reaction catalysed was the hydrolysis of sucrose to free glucose and fructose. At high sucrose concentrations, oligosaccharide production was the major reaction catalysed.  相似文献   

5.
为了利用大肠杆菌构建模式"细胞工厂",必须了解在构建过程中各种因素的影响。本研究选用敲除了lpdA基因的大肠杆菌作为模型细胞,考察了该突变菌在合成培养基中利用葡萄糖、果糖、木糖和甘露糖累积丙酮酸的能力。结果显示,在初始糖浓度为10g/L的情况下,lpdA突变菌可以很好地利用葡萄糖、果糖、木糖和甘露糖转化丙酮酸,其得率分别达到了0.884g/g、0.802g/g、0.817g/g和0.808g/g,且在以葡萄糖、果糖和木糖发酵时,丙酮酸的积累过程与细胞生长偶联。甘露糖发酵的情况则不同:菌浓度很快达到平台期,随后丙酮酸积累和甘露糖消耗都表现为线性变化。当在考察了不同的接种量对lpdA突变菌发酵葡萄糖的影响时发现,大接种量能加快葡萄糖消耗速率、丙酮酸的积累速率和细胞生长速率,但丙酮酸得率却明显下降。这些结果对构建以大肠杆菌为母体的模式"细胞工厂"有参考价值。  相似文献   

6.
果糖及葡萄糖混合物为底物的丙酮丁醇发酵   总被引:2,自引:0,他引:2  
旨在以果糖和葡萄糖混合物模拟能源作物菊芋块茎水解液发酵生产丁醇。在培养基初始pH 5.5,发酵过程不控制pH的混合糖发酵中,出现了发酵提前终止现象,终点残糖浓度达23.26 g/L,而丁醇产量仅5.51 g/L。进一步对比混合糖及葡萄糖、果糖不控制pH的发酵结果表明,导致这一现象的原因可能是有机酸毒性太大和pH太低。全程控制pH的混合糖发酵结果表明,高pH条件有利于提高糖利用率,但产酸多,丁醇产量较低;而低pH条件下发酵残糖较多,但丁醇产量相对较高。基于此,文中采用阶段性pH调控策略,即将发酵初期的pH控  相似文献   

7.
A microbial sensor consisting of immobilized living whole cells of Brevibacterium lactofermentum and an oxygen electrode was prepared for continuous determination of total assimilable sugars (glucose, fructose and sucrose) in a fermentation broth for glutamic acid production. Total assimilable sugars were evaluated from oxygen consumption by the immobilized microorganisms. When a sample solution containing glucose was applied to the sensor system, increased consumption of oxygen by the microorganisms caused a decrease in the dissolved oxygen around the Teflon membrane of the oxygen electrode and the current of the electrode decreased markedly with time until steady state was reached. The response time was ≈ 10 min by the steady state method and 1 min by the pulse method. A linear relationship was found between the decrease in current and the concentration of glucose (<1 mM), fructose (<1 mM) and sucrose (<0.8 mM). The ratio of the sensitivity of the microbial sensor to glucose, fructose and sucrose was 1.00:0.80:0.92. The decrease in current was reproducible to within 2% of the relative standard deviation when a sample solution containing glucose (0.8 mM) was employed for experiments. The selectivity of the microbial sensor for assimilable sugars was satisfactory for use in the fermentation process. The additivity of the response of the microbial sensor for glucose, fructose and sucrose was examined. The difference between the observed and calculated values was within 8%. The microbial sensor was applied to a fermentation broth for glutamic acid production. Total assimilable sugars can be determined by the microbial sensor which can be used for more than 10 days and 960 assays.  相似文献   

8.
Bacillus subtilis NRC33a was able to produce both inducible and constitutive extracellular levansucrase, respectively, using sucrose and glucose as carbon source. The optimal production of the levansucrase was at 30°C. The effect of different nitrogen sources showed that baker’s yeast with 2% concentration gave the highest levansucrase activity. Addition of 0.15 g/L MgSO4 was the most favorable for levansucrase production. The enzymic synthesis of levan was studied using 60% acetone fraction. The results indicated that high enzyme concentrations produced increasing amounts of levan, and hence conversion of fructose to levan reached 84% using 1000 μg/ml enzyme protein. Sucrose concentration was the most effective factor controlling the molecular weight of the synthesized levan. The conversion of fructose to levan was maximal at 30°C. The time of reaction clearly affected the conversion of fructose to levan, which reached its maximum productivity at 18 hours (92%). Identification of levan indicated that fructose was the building unit of levan.  相似文献   

9.
Summary Z.mobilis is strain ZM4 was grown on 250 g/l fructose and sucrose media in batch culture and on 100 and 150 g/l sucrose media in continuous culture. With fructose, a significant reduction in the growth rate and the cell yield was apparent although the other kinetic parameters were similar to those previously reported for fermentation of glucose. With sucrose the major differences were a reduction in ethanol yield, (due to levan formation) and a lower final ethanol concentration. Ethanol inhibition of sucrose metabolism occurred at relatively low ethanol concentrations compared to those inhibiting glucose metabolism.  相似文献   

10.
The yeast Saccharomyces cerevisiae has a fundamental role in fermenting grape juice to wine. During alcoholic fermentation its catabolic activity converts sugars (which in grape juice are a near equal ratio of glucose and fructose) and other grape compounds into ethanol, carbon dioxide and sensorily important metabolites. However, S. cerevisiae typically utilises glucose and fructose with different efficiency: glucose is preferred and is consumed at a higher rate than fructose. This results in an increasing difference between the concentrations of glucose and fructose during fermentation. In this study 20 commercially available strains were investigated to determine their relative abilities to utilise glucose and fructose. Parameters measured included fermentation duration and the kinetics of utilisation of fructose when supplied as sole carbon source or in an equimolar mix with glucose. The data were then analysed using mathematical calculations in an effort to identify fermentation attributes which were indicative of overall fructose utilisation and fermentation performance. Fermentation durations ranged from 74.6 to over 150 h, with clear differences in the degree to which glucose utilisation was preferential. Given this variability we sought to gain a more holistic indication of strain performance that was independent of fermentation rate and therefore utilized the area under the curve (AUC) of fermentation of individual or combined sugars. In this way it was possible to rank the 20 strains for their ability to consume fructose relative to glucose. Moreover, it was shown that fermentations performed in media containing fructose as sole carbon source did not predict the fructophilicity of strains in wine-like conditions (equimolar mixture of glucose and fructose). This work provides important information for programs which seek to generate strains that are faster or more reliable fermenters.  相似文献   

11.
丙酮丁醇梭菌发酵菊芋汁生产丁醇   总被引:4,自引:0,他引:4  
对丙酮丁醇梭菌Clostridium acetobutylicum L7发酵菊芋汁酸水解液生产丁醇进行了初步研究。实验结果表明,以该水解液为底物生产丁醇,不需要添加氮源和生长因子。当水解液初始糖浓度为48.36 g/L时,其发酵性能与以果糖为碳源的对照组基本相同,发酵终点丁醇浓度为8.67 g/L,丁醇、丙酮和乙醇的比例为0.58∶0.36∶0.06,但与以葡萄糖为碳源的对照组相比,发酵时间明显延长,表明该菌株葡萄糖转运能力强于果糖。当水解液初始糖浓度提高到62.87 g/L时,发酵终点残糖浓度从3.09 g/L增加到3.26 g/L,但丁醇浓度却提高到11.21 g/L,丁醇、丙酮和乙醇的比例相应为0.64∶0.29∶0.05,表明适量糖过剩有助于C.acetobutylicum L7胞内代谢从丙酮合成向丁醇合成途径调节;继续提高水解液初始糖浓度,发酵终点残糖浓度迅速升高,丁醇生产的技术经济指标受到明显影响。  相似文献   

12.
This study describes the in vitro digestibility and fermentability of high molecular weight (ca. 2,000,000) levan and its effect on the metabolism of lipids in growing rats fed cholesterol-free diets. Levan was synthesized from sucrose using bacterial levansucrase immobilized on a honeycomb-shaped ceramic support. Although body weight gain, weight of visceral organs, morphologic changes in the digestive tract, and the serum triacylglycerol and glucose concentrations were not affected by feeding levan diets for 4 weeks, a significant hypocholesterolemic effect was observed. Serum cholesterol level was decreased to 83% or 59% by feeding a 1% or 5% levan diet, respectively. The hypocholesterolemic effect was accompanied by a significant increase in fecal excretion of sterols and lipids. High molecular weight levan, though not hydrolyzed by the salivary amylases, was hydrolyzed by artificial gastric juice and was changed to a low molecular weight (ca. 4,000) levan with a small amount of fructose, but did not produce any fructooligosaccharides. Low molecular weight (ca. 6,000) levan was not hydrolyzed by either pancreatic juice or small intestinal enzymes. This suggests that, in vivo, low molecular weight levan derived from the high molecular weight material is not further digested and reaches the colon intact. The fermentation of low molecular weight levan (ca. 6,000) by several strains of bifidobacteria was not observed. These results showed that the hypocholesterolemic effect of levan may result from the prevention of intestinal sterol absorption, and not from the action of the fermentation products of levan.  相似文献   

13.
Abstract Sucrose, glucose and fructose are degraded in the Gram-negative bacterium Zymomonas mobilis via an anaerobic version of the Entner-Doudoroff pathway, to an equimolar mixture of ethanol and carbon dioxide. Sucrose is split extracellularly into glucose and fructose (or levan). The two sugars are transported into the cell via facilitated diffusion (uniport). A periplasmic enzyme, glucose-fructose oxidoreductase, provides the novel compatible solute, sorbitol, to counteract detrimental osmotic stress. Carbon flux and its regulation, and branches into anabolic pathways are discussed together with recent approaches to broaden the substrate range of the bacterium.  相似文献   

14.
Summary Ethanol yields produced by Zymomonas strains from sucrose are significantly lower than from glucose or fructose. The low yield is a consequence of the formation of both levan and sorbitol as by-products. Most of the levan is in a non-precipitable form, indicating low molecular weight. Formation of sorbitol was observed with both the Zymomonas strains studied. The measured amounts of levan and sorbitol were 8% and 11% of the original sucrose content, respectively.  相似文献   

15.
Sequential fermentation for the production of two invaluable biopolymers, levan and poly-ε-lysine (ε-PL), has been successfully developed. It involves fermentation of Bacillus subtilis (natto) Takahashi in sucrose medium to produce levan, separation of levan product from small remaining sugar molecules by ultrafiltration and fermentation of the remnant from levan production by Streptomyces albulus to produce ε-PL. In the process, 50-60 g/L of levan was produced (100% recovery after precipitation by ethanol). The remnant from levan production with glucose adjusted to 30 g/L and with combined use of yeast extract (10 g/L), (NH4)2SO4 (2 g/L) and basal salts was proven to be suitable for ε-PL production. 4.37 g/L of ε-PL accumulation (85% recovery after purification) was reached in 72 h using two-stage fermentation with control of pH. The process of using remnant (waste) from levan fermentation for the second biopolymer (ε-PL) production is unprecedented and the products obtained are environmental-friendly.  相似文献   

16.
Resting cells of Fusobacterium nucleatum 10953 (grown previously in a medium containing glucose) failed to accumulate glucose under aerobic or anaerobic conditions. However, the addition of glutamic acid, lysine, or histidine to anaerobic suspensions of cells caused the immediate and rapid accumulation of glucose. Except for the amino acid-dependent transport of galactose and fructose (the latter being transported at approximately one-third the rate of glucose), no other sugars tested were accumulated by the resting cells. Amino acid-dependent uptake of sugar(s) by F. nucleatum was abolished by exposure of cells to air, and under aerobic conditions the rates of fermentation of glutamic acid and lysine were less than 15% of the rates determined anaerobically. The energy necessary for active transport of the sugars (acetyl phosphate and ATP) is derived from the anaerobic fermentation of glutamic acid, lysine, or histidine. Competition studies revealed that glucose and galactose were mutual and exclusive inhibitors of transport, and it is suggested that the two sugars (Km = 14 microM) are translocated via a common carrier. The products of amino acid-dependent sugar transport were recovered from resting cells as ethanol-precipitable, high-molecular-weight polymers. Polymer formation by F. nucleatum, during growth in medium containing glucose or galactose, was confirmed by electron microscopy.  相似文献   

17.
Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.  相似文献   

18.
Summary The use of Mucor sp. M105 and Fusarium sp. F5 in the production of fructose from sugarcane sucrose and high fructose syrup (HFS) was investigated. Although Mucor sp. could not utilize sucrose as the sole carbon and energy source for cell growth, Mucor sp. preferentially utilized glucose in a glucose:fructose (1:1) mixture during fermentation to ethanol. In contrast, Fusarium sp. utilized sucrose as sole carbon source by secretion of extracellular hydrolytic enzymes that degraded the disaccharide. In Fusarium sp., glucose formation in the medium was faster than fructose. Due to the low consumption rate of fructose, this substrate remained in the fermentation broth. The application of these biological systems for the production of fructose from either sucrose or HFS is discussed.  相似文献   

19.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   

20.
Conversion of glucose to fructose and sorbitol is documented in rat hepatoma-derived cultured cells (HTC cells). After addition of 5.5 mM [U-14C]glucose to incubation medium, labeled sorbitol and fructose accumulated intracellularly at a linear rate over a period of 60 min. The sugars were isolated, identified, and quantitated by paper chromatography, gas-liquid chromatography, and enzymatic phosphorylation of fructose. Primary culture of adult rat hepatocytes was analyzed similarly and demonstrated no significant accumulation of labeled fructose or sorbitol. The basis for this difference between HTC cells and primary hepatocyte culture was examined both in terms of enzyme activities that mediate the formation of sorbitol and fructose and in terms of the catabolism of these sugars. Both types of culture (as well as extracts of intact rat liver) exhibited enzymatic activities catalyzing the conversion of glucose to sorbitol (aldose reductase) and sorbitol to fructose (sorbitol dehydrogenase). However, the cultures differed strikingly with regard to the catabolism of sorbitol and fructose. The conversion of labeled sorbitol to metabolites in HTC cells was negligible; by contrast, hepatocytes in primary culture utilized the sugars at rates comparable to that of glucose, which may account for the lack of their accumulation in primary culture. The findings suggest that the conversion of glucose to sorbitol and fructose by HTC cells may represent a retained normal liver function, one which is amplified by the inability of HTC cells to dispose of these sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号