首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The infection of maize by Fusarium verticillioides can result in highly variable disease symptoms ranging from asymptomatic plants to severe rotting and wilting. We produced F. verticillioides green fluorescent protein-expressing transgenic isolates and used them to characterize early events in the F. verticillioides-maize interaction that may affect later symptom appearance. Plants grown in F. verticillioides-infested soil were smaller and chlorotic. The fungus colonized all of the underground parts of a plant but was found primarily in lateral roots and mesocotyl tissue. In some mesocotyl cells, conidia were produced within 14 to 21 days after infection. Intercellular mycelium was detected, but additional cells were not infected until 21 days after planting. At 25 to 30 days after planting, the mesocotyl and main roots were heavily infected, and rotting developed in these tissues. Other tissues, including the adventitious roots and the stem, appeared to be healthy and contained only a small number of hyphae. These results imply that asymptomatic systemic infection is characterized by a mode of fungal development that includes infection of certain tissues, intercellular growth of a limited number of fungal hyphae, and reproduction of the fungus in a few cells without invasion of other cells. Development of visibly rotted tissue is associated with massive production of fungal mycelium and much less organized growth.  相似文献   

2.
Colletotrichum graminicola is a filamentous ascomycete that causes anthracnose disease of maize. While the fungus can cause devastating foliar leaf blight and stalk rot diseases, little is known about its ability to infect roots. Previously published reports suggest that C. graminicola may infect maize roots and that root infections may contribute to the colonization of aboveground plant tissues, leading to disease. To determine whether C. graminicola can infect maize roots and whether root infections can result in the colonization of aboveground plant tissues, we developed a green fluorescent protein-tagged strain and used it to study the plant root colonization and infection process in vivo. We observed structures produced by other root pathogenic fungi, including runner hyphae, hyphopodia, and microsclerotia. A mosaic pattern of infection resulted from specific epidermal and cortical cells becoming infected by intercellular hyphae while surrounding cells were uninfected, a pattern that is distinctly different from that described for leaves. Interestingly, falcate conidia, normally restricted to acervuli, were also found filling epidermal cells and root hairs. Twenty-eight percent of plants challenged with soilborne inoculum became infected in aboveground plant parts (stem and/or leaves), indicating that root infection can lead to asymptomatic systemic colonization of the plants. Many of the traits observed for C. graminicola have been previously reported for other root-pathogenic fungi, suggesting that these traits are evolutionally conserved in multiple fungal lineages. These observations suggest that root infection may be an important component of the maize anthracnose disease cycle.  相似文献   

3.
A distinctive fungal endophyte, Cashhickia acuminata nov. gen. et sp., is described from permineralized calamite roots from the Upper Pennsylvanian Grand-Croix cherts of France. Heavily infected roots contain numerous intracellular hyphae in the outer cortex that arise from a meshwork-like mycelium extending between cortical cells. All intracellular hyphae are oriented toward the root center; none occur on the inner periclinal host cell walls. Other roots of the same type show localized infection by this fungus in which isolated cortical cells contain or give rise to intracellular fungal growth. Within the cortical cells are host responses in the form of callosities that indicate the roots were alive at the time of infection. Other endophytes are present in the same host tissue but are less frequent. The discovery of this association provides the first detailed account on the morphology of a Carboniferous fungal root endophyte, as well as the spatial distribution within the host, and infection pathways within the cortical tissues.  相似文献   

4.
Cephalosporium maydis infects young maize plants easily, but as plants age fewer are infected and none after approx. 50 days from sowing. The mesocotyl and seminal, fibrous and adventitious roots are attacked, especially when there is damage or much inoculum. Most penetration occurs where roots are elongating and emerge from the mesocotyl or from fibrous roots. At first the fungus grows superficially on roots, producing hyphae with short, brown, thick-walled, and swollen cells. After penetrating, the fungus spreads towards the xylem, where it grows slowly at first but after 5 weeks grows faster upwards.
C. acremonium causes black-bundle disease of maize. It seems to infect plants growing in unfavourable conditions but the details remain uncertain. The percentage of plants infected was not related to the amount of inoculum and the fungus may not be a primary parasite. The sterile culture filtrate of the fungus produces vascular discoloration and wilt of maize seedlings.  相似文献   

5.
Fusarium species belonging to the Fusarium fujikuroi species complex (FFSC) are associated with maize in northern Mexico and cause Fusarium ear and root rot. In order to assess the diversity of FFSC fungal species involved in this destructive disease in Sinaloa, Mexico, a collection of 108 fungal isolates was obtained from maize plants in 2007–2011. DNA sequence analysis of the calmodulin and elongation factor 1α genes identified four species: Fusarium verticillioides, F. nygamai, F. andiyazi and F. thapsinum (comprising 79, 23, 4 and 2 isolates, respectively). Differential distribution of Fusarium species in maize organs was observed, that is F. verticillioides was the most frequently isolated species from maize seeds, while F. nygamai predominated on maize roots. Mixed infections with F. verticillioides/F. thapsinum and F. verticillioides/F. nygamai were detected in maize seeds and roots, respectively. Pathogenicity assay demonstrated the ability of the four species to infect maize seedlings and induce different levels of disease severity, reflecting variation in aggressiveness, plant height and root biomass. Isolates of F. verticillioides and F. nygamai were the most aggressive. These species were able to colonize all root tissues, from the epidermis to the vascular vessels, while infection by F. andiyazi and F. thapsinum was restricted to the epidermis and adjacent cortical cells. This is the first report of F. nygamai, F. andiyazi and F. thapsinum infecting maize in Mexico and co‐infecting with F. verticillioides. Mixed infections should be taken into consideration due to the production and/or accumulation of diverse mycotoxins in maize grain.  相似文献   

6.
7.
Patterns of infection withFusarium culmorum (W G Smith) Saccardo were observed in seedling roots of barley (Hordeum vulgare L.), wheat (Triticum aestivum L.), maize (Zea mays L.) and asparagus (Asparagus officinalis L). Apical regions of the main roots were not infected. Since penetration into the root occurred several days after inoculation and the roots were growing during the experiment, these regions had apparently not been in existence long enough to be infected. In older regions of barley, wheat and asparagus, hyphae entered through the tips of lateral roots. In barley and wheat, which had not developed any suberin lamellae in their subepidermal layer, infection occurred randomly over the remainder of the root. In maize, the fungus penetrated the epidermis at many sites but did not breach the exodermis in which all cells possessed both Casparian bands and suberin lamellae. Maize roots, therefore, sustained only minimal infections. In asparagus, the fungus grew through the short (passage) cells but never the long cells of the exodermis. In doing so, it penetrated cells possessing Casparian bands but lacking suberin lamellae. The results support the hypothesis that suberin lamellae provide effective barriers to the growth ofF. culmorum hyphae.  相似文献   

8.
Oxylipins are a newly emerging group of signals that serve defence roles or promote virulence. To identify specific host and fungal genes and oxylipins governing the interactions between maize and Fusarium verticillioides, maize wild‐type and lipoxygenase3 (lox3) mutant were inoculated with either F. verticillioides wild‐type or linoleate‐diol‐synthase 1‐deleted mutant (ΔFvlds1D). The results showed that lox3 mutants were more resistant to F. verticillioides. The reduced colonization on lox3 was associated with reduced fumonisin production and with a stronger and earlier induction of ZmLOX4, ZmLOX5 and ZmLOX12. In addition to the reported defence function of ZmLOX12, we showed that lox4 and lox5 mutants were more susceptible to F. verticillioides and possessed decreased jasmonate levels during infection, suggesting that these genes are essential for jasmonic acid (JA)‐mediated defence. Oxylipin profiling revealed a dramatic reduction in fungal linoleate diol synthase 1 (LDS1)‐derived oxylipins, especially 8‐HpODE (8‐hydroperoxyoctadecenoic acid), in infected lox3 kernels, indicating the importance of this molecule in virulence. Collectively, we make the following conclusions: (1) LOX3 is a major susceptibility factor induced by fungal LDS1‐derived oxylipins to suppress JA‐stimulating 9‐LOXs; (2) LOX3‐mediated signalling promotes the biosynthesis of virulence‐promoting oxylipins in the fungus; and (3) both fungal LDS1‐ and host LOX3‐produced oxylipins are essential for the normal infection and colonization processes of maize seed by F. verticillioides.  相似文献   

9.
Although microRNAs (miRNAs) regulate the defence response against multiple pathogenic fungi in diverse plant species, few efforts have been devoted to deciphering the involvement of miRNA in resistance to Fusarium verticillioides, a major pathogenic fungus affecting maize production. In this study, we discovered a novel F. verticillioides‐responsive miRNA designated zma‐unmiR4 in maize kernels. The expression of zma‐unmiR4 was significantly repressed in the resistant maize line but induced in the susceptible lines upon exposure to F. verticillioides exposure, whereas its target gene ZmGA2ox4 exhibited the opposite pattern of expression. Heterologous overexpression of zma‐unmiR4 in Arabidopsis resulted in enhanced growth and compromised resistance to F. verticillioides. By contrast, transgenic plants overexpressing ZmGA2ox4 or the homologue AtGA2ox7 showed impaired growth and enhanced resistance to F. verticillioides. Moreover, zma‐unmiR4‐mediated suppression of AtGA2ox7 disturbed the accumulation of bioactive gibberellin (GA) in transgenic plants and perturbed the expression of a set of defence‐related genes in response to F. verticillioides. Exogenous application of GA or a GA biosynthesis inhibitor modulated F. verticillioides resistance in different plants. Taken together, our results suggest that the zma‐unmiR4–ZmGA2ox4 module might act as a major player in balancing growth and resistance to F. verticillioides in maize.  相似文献   

10.
11.
A simple and convenient culture system has been developed for the analysis of ectomycorrhiza formation under controlled conditions. Rapid and synchronous mycorrhiza synthesis was observed when thin and even layers of Pisolithus tinctorius (Pers.) hyphae were brought at once into contact with the entire root system of 3-month-old Picea abies (L. Karst) plants. Suitable fungal layers were grown on cardboard with limiting glucose supply in the medium to maximize radial growth. The glucose was almost consumed by the time the fungus had spread over the whole cardboard and was ready for inoculation of the roots. At this stage, the fungus contained trehalose and arabitol as the main soluble carbohydrates. A few hours after the assembly of the culture system, contacts between roots and aerial hyphae were observed and a sheath was formed 3 days later, suggesting very rapid ectomycorrhiza formation under these conditions. The pool of soluble carbohydrates of the inoculum, i.e. the extramatrical mycelium, declined after inoculation of the roots and was almost zero after 2 weeks. The supply of carbon by the plant was then sufficient for the fungus to expand the soluble pool efficiently in both the mycorrhizas and the extramatrical mycelium. The kinetics of the carbohydrate pool and the observed differentiation of the short roots to mycorrhizas imply that in our culture system fully functional symbiosis was established no later than 14 days after the plants were inoculated with the fungus.  相似文献   

12.
One hundred and eighty one strains were selected among Fusarium verticillioides populations isolated from maize samples collected in three fields located in northern Italy. All the isolates were tested for their pathogenicity on maize seeds by assessing the seed germination percentages and the percentage infection indexes concerning seed colonization, radicle decay and coleoptile rot. Fusarium verticillioides strains did not affect seed germination even in presence of high seed colonization, but showed a variable pathogenic behavior according to the maize growth stages. Seedborne F. verticillioides population as well as strains isolated at maturity was effective in seed colonization and in inducing coleoptile rot, not causing however serious radicle decay. Only populations isolated at seedling and pre-silking stages showed high radicle decay ability. These results provide baseline information on F. verticillioides pathogenicity. They constitute an important input for further investigation of F. verticillioides biology in order to define its evolutionary potential.  相似文献   

13.

Aims

The aim was to quantify the nitrogen (N) transferred via the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices from both a dead host and a dead non-host donor root to a receiver tomato plant. The effect of a physical disruption of the soil containing donor plant roots and fungal mycelium on the effectiveness of N transfer was also examined.

Methods

The root systems of the donor (wild type tomato plants or the mycorrhiza-defective rmc mutant tomato) and the receiver plants were separated by a 30 μm mesh, penetrable by hyphae but not by the roots. Both donor genotypes produced a similar quantity of biomass and had a similar nutrient status. Two weeks after the supply of 15?N to a split-root part of donor plants, the shoots were removed to kill the plants. The quantity of N transferred from the dead roots into the receiver plants was measured after a further 2 weeks.

Results

Up to 10.6 % of donor-root 15N was recovered in the receiver plants when inoculated with the arbuscular mycorrhizal fungus (AMF). The quantity of 15N derived from the mycorrhizal wild type roots clearly exceeded that from the only weakly surface-colonised rmc roots. Hyphal length in the donor rmc root compartments was only about half that in the wild type compartments. The disruption of the soil led to a significantly increased AMF-mediated transfer of N to the receiver plants.

Conclusions

The transfer of N from dead roots can be enhanced by AMF, especially when the donor roots have been formerly colonised by AMF. The transfer can be further increased with higher hyphae length densities, and the present data also suggest that a direct link between receiver mycelium and internal fungal structures in dead roots may in addition facilitate N transfer. The mechanical disruption of soil containing dead roots may increase the subsequent availability of nutrients, thus promoting mycorrhizal N uptake. When associated with a living plant, the external mycelium of G. intraradices is readily able to re-establish itself in the soil following disruption and functions as a transfer vessel.  相似文献   

14.
A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.  相似文献   

15.
16.
Vector-borne plant pathogens often change host traits to manipulate vector behavior in a way that favors their spread. By contrast, infection by opportunistic fungi does not depend on vectors, although damage caused by an herbivore may facilitate infection. Manipulation of hosts and vectors, such as insect herbivores, has not been demonstrated in interactions with fungal pathogens. Herein, we establish a new paradigm for the plant-insect-fungus association in sugarcane. It has long been assumed that Fusarium verticillioides is an opportunistic fungus, where it takes advantage of the openings left by Diatraea saccharalis caterpillar attack to infect the plant. In this work, we show that volatile emissions from F. verticillioides attract D. saccharalis caterpillars. Once they become adults, the fungus is transmitted vertically to their offspring, which continues the cycle by inoculating the fungus into healthy plants. Females not carrying the fungus prefer to lay their eggs on fungus-infected plants than mock plants, while females carrying the fungus prefer to lay their eggs on mock plants than fungus-infected plants. Even though the fungus impacts D. saccharalis sex behavior, larval weight and reproduction rate, most individuals complete their development. Our data demonstrate that the fungus manipulates both the host plant and insect herbivore across life cycle to promote its infection and dissemination.Subject terms: Molecular ecology, Molecular ecology  相似文献   

17.
Fusarium oxysporum f. sp. vasinfectum penetration hyphae infect living cells in the meristematic zone of cotton (Gossypium barbadense L.) roots. We characterized wall modifications induced by the fungus during infection of the protodermis using antibodies against callose, arabinogalactan-proteins, xyloglucan, pectin, polygalacturonic acid and rhamnogalacturonan I in high-pressure frozen, freeze-substituted root tissue. Using quantitative immunogold labelling we compared the cell walls before and after hyphal contact, cell plates with plasmodesmata during cytokinesis, and wall appositions induced by fungal contact. In the already-existing wall, fungal contact induced only minor modifications such as an increase of xyloglucan epitopes. Wall appositions mostly exhibited epitopes similar to the cell plate except that wall appositions had a much higher callose content. This study shows that wall appositions induced by Fusarium oxysporum hyphae are the result of normal cell wall synthesis and the addition of large amounts of callose. The appositions do not stop fungal growth.  相似文献   

18.
The present study aimed to analyze the growth kinetics and morphogenesis of toxigenic Fusarium verticillioides strains. Growth curves based on mycelial dry weight measured after 24, 48, and 96 h and every 4 days for a period of 60 days were obtained for each strain. The morphogenesis of this fungus was studied during its developmental stages through the fluorescent method Fluorecein Diacetate-FDA and Ethidium Bromide-EB. The growth curves of the strains usually followed a homogeneous pattern comparable to the ideal growth curve. Using the fluorescence method, non-viable cells showed a light bright red coloration and viable cells presented green fluorescence with three fluorescent patterns. The present results showed that the morphogenesis of F. verticillioides is an asynchronous process characterized by the presence of a wide variety of fungal forms until 50 days of culture. The method is very useful to demonstrate the F. verticillioides growth stages as well as the perfect differentiation between viable and non-viable cell.  相似文献   

19.
Summary A cytological study was carried out to describe the initial steps of infection of maize roots by the soil fungusSporisorium reilianum f. sp.zeae. Morphogenetic changes of the fungal cells were induced in the presence of maize roots. Extensive hyphal growth led to the formation of a thick fungal layer colonising the maize root surface. This structure is original in interactions of members of the family Ustilaginaceae with plants. In the thick fungal layer, we observed fimbriae inserted into the host cell wall, suggesting a direct role of these fibrillar structures in cell adhesion and infection processes. During infection, no reaction of host cells was observed. In this way, the fungus acts as a biotrophic endophyte during the initial steps of infection.  相似文献   

20.
Pochonia chlamydosporia (Pc123) is a fungal parasite of nematode eggs which can colonize endophytically barley and tomato roots. In this paper we use culturing as well as quantitative PCR (qPCR) methods and a stable GFP transformant (Pc123gfp) to analyze the endophytic behavior of the fungus in tomato roots. We found no differences between virulence/root colonization of Pc123 and Pc123gfp on root-knot nematode Meloidogyne javanica eggs and tomato seedlings respectively. Confocal microscopy of Pc123gfp infecting M. javanica eggs revealed details of the process such as penetration hyphae in the egg shell or appressoria and associated post infection hyphae previously unseen. Pc123gfp colonization of tomato roots was low close to the root cap, but increased with the distance to form a patchy hyphal network. Pc123gfp colonized epidermal and cortex tomato root cells and induced plant defenses (papillae). qPCR unlike culturing revealed reduction in fungus root colonization (total and endophytic) with plant development. Pc123gfp was found by qPCR less rhizosphere competent than Pc123. Endophytic colonization by Pc123gfp promoted growth of both roots and shoots of tomato plants vs. uninoculated (control) plants. Tomato roots endophytically colonized by Pc123gfp and inoculated with M. javanica juveniles developed galls and egg masses which were colonized by the fungus. Our results suggest that endophytic colonization of tomato roots by P. chlamydosporia may be relevant for promoting plant growth and perhaps affect managing of root-knot nematode infestations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号