首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Effect of body posture on spatial distribution of pulmonary blood flow   总被引:1,自引:0,他引:1  
Single-photon emission-computed tomography (SPECT) on intact dogs and humans suggests that one aspect of regional blood flow in the lung (Qr) is independent of gravity, e.g., the gradient in Qr between the core and the periphery. To further evaluate these findings, six anesthetized healthy dogs (approximately 30 kg), two in the supine posture, two in the prone posture, and two suspended in the upright posture, breathing spontaneously, were injected (iv) at end expiration with 20 mCi99mTc-labeled albumin macroaggregates. The animals were killed, their chests were opened, their lungs were removed and dissected free of other tissue, and the blood was drained. The lungs were dried by blowing warm air (50 degrees C) while they were inflated to full capacity for about 18 h. The fully inflated and dry lungs were placed in the supine position and SPECT was performed to determine the three-dimensional distribution of activity. One hundred and twenty projections of the activity in the entire lungs were obtained at 3 degrees steps with a rotating gamma camera and stored in computer memory. Once SPECT was completed, either a coronal slice or a sagittal slice (1 cm thick) was cut and imaged directly by placing it against the gamma camera collimator for 6 min. The tomographic-reconstructed slices revealed that at isogravity, in all body postures, Qr in the central region of the lungs was up to 10 times that in the periphery. Furthermore, the central-peripheral gradient was discernible within the individual lobes. The direct images of slices also confirmed these findings. Although flow inequalities independent of gravity were present, the central region with the highest flow often was closer to the dependent regions of the lungs, suggesting that gravity had some influence on the final distribution. The results suggest that factors other than gravity also play an important role in the distribution of pulmonary blood flow. These factors may be related to the conductance of the vascular pathways that lead to different regions in the lungs.  相似文献   

2.
The existence of a major gravity-independent gradient of blood flow in lungs has recently been described based on single photon emission computed tomography after intravenous injection of radioactively labeled macroaggregates. We wanted to test this hypothesis of a major gravity-independent gradient in lung blood flow in experiments with direct measurement of macroaggregate distribution in the dog lung. In six anesthetized (4 prone spontaneously breathing, 2 mechanically ventilated) dogs we injected 111In-labeled albumin macroaggregates intravenously. We killed the dogs, removed, inflated, and froze the lower lobes. We sliced the lobes 1 cm thick and made gamma camera images of the slices. We then cut three or four slices in each lobe into two or three concentric layers and measured the radioactivity per gram of tissue in a well-type gamma counter. In three of the dogs we also labeled the red cells (99mTc) so that blood volume in each sample could be determined. The gamma camera images were acquired on a 64 X 64 matrix with 4 X 4 mm pixels. On the numeric printouts from the individual slices we made two or three concentric layers and calculated activity per pixel in each layer. Neither by the well counting nor by the pixel analysis of the gamma scans did we detect any gravity-independent distribution of blood flow. With the well counting the distribution was the same whether macroaggregate activity was expressed per gram of tissue or per gram of blood-free tissue. We conclude that by direct measurements no major gravity-independent gradient of pulmonary blood flow can be detected in dog lungs.  相似文献   

3.
To examine the effect of cardiac output (CO) on the gravity-nondependent distribution of pulmonary blood flow, 2 X 10(6) 99mTc-labeled albumin microspheres (20 microns) were injected at end expiration into dogs (anesthetized, supine, and breathing room air spontaneously). Two animals were injected at their resting CO, two were injected during increased CO (arteriovenous fistulas induced), and two were injected at low CO (phlebotomy induced). The chest was opened and the lungs were removed, drained of blood, and dried while fully inflated. Single-photon emission-computed tomography was performed on the dry lungs to map the distribution of activity in transverse, coronal, and sagittal slices. The results confirmed the presence of a central-peripheral gravity-nondependent gradient and showed that increases in CO were associated with increases in absolute flow to both the central and peripheral regions of the lung with persistence of the central-peripheral gradient. These observations were further confirmed by direct imaging of midcoronal slices. Examination of the average flow in vertical and horizontal slices showed that, when zone 1 was not present, changes in CO affected all slices uniformly, such that when the CO doubled, the absolute flow in every slice in all three planes also doubled. We conclude that, with the exception of recruitment and derecruitment of vascular channels in the upper regions of the lung (zone 1), when CO changes, the blood flow everywhere in the lung changes uniformly and in proportion to the CO. This uniform increase in blood flow is consistent with the three-dimensional nature and resistive properties of the pulmonary vascular tree.  相似文献   

4.
Results of recent investigations in humans and dogs indicate that gravity-independent factors may be important in determining the distribution of pulmonary blood flow. To further evaluate the role of gravity-independent factors, pulmonary blood flow distribution was examined using 15-microns radionuclide-labeled microspheres in five prone ponies over 5 h of pentobarbital sodium anesthesia. The ponies were killed, and the lungs were excised and dried by air inflation (pressure 45 cmH2O). The dry lungs were cut into transverse slices 1-2 cm thick along the dorsal-ventral axis, parallel to gravity. Radioactivity of pieces cut from alternate slices was measured with a gamma well counter. The main finding was a preferential distribution of pulmonary blood flow to dorsal-caudal regions and higher flow in the center of each lung slice when compared with the slice periphery. Flow was lowest in cranial and ventral areas. Differences of +/- 2 SD were observed between core and peripheral blood flow. No medial-lateral differences were found. Pulmonary blood flow distribution did not change over 5 h of anesthesia, and the basic flow pattern was not different in the left vs. right lung. These results suggest that in the intact prone mechanically ventilated pony (inspired O2 fraction greater than or equal to 0.95) factors other than gravity are primary determinants of pulmonary blood flow.  相似文献   

5.
We measured the regional distribution of pulmonary extravascular and interstitial water to examine the possibility that regional differences in microvascular pressure or tissue stress may cause regional differences in lung water. We placed chloralose-anesthetized dogs in an upright (n = 6) or supine (n = 7) position for 180 min. We injected 51Cr-labeled EDTA to equilibrate to the extracellular space and 125I-labeled albumin to equilibrate with plasma. At the end of the experiment, the lungs were removed, passively drained of blood, and inflated before rapid freezing. Lungs were divided into horizontal slices, and extravascular, interstitial, and plasma water, red cell volume, and dry lung weight were determined for each slice. We found that regional extravascular and interstitial water were constant throughout the lungs in both groups and that there were no significant differences between upright and supine dogs. There were no significant differences in hematocrit between slices. We conclude that gravity and body position have no measurable effect on either the total size of the extravascular and interstitial compartments or their regional distribution.  相似文献   

6.
Distributions of pulmonary blood flow per unit lung volume were measured with subjects in the prone, supine, and sitting positions by means of radionuclide-computed tomography of intravenously administered 99mTc-labeled macroaggregates of human serum albumin. The blood flow was greater in the direction of gravity in all 31 subjects except one with severe mitral valve stenosis. With the subject in a sitting position, four different types of distribution were distinguished. One type had a three-zonal blood flow distribution as previously reported by West and co-workers (J. Appl. Physiol. 19: 713-724, 1964). Pulmonary arterial pressure and venous pressure estimated from this model showed reasonable agreement with pulmonary arterial pressure and capillary wedge pressure measured by Swan-Ganz catheter in 17 supine patients and in 2 sitting patients. The method makes possible noninvasive assessment of pulmonary vascular pressures.  相似文献   

7.
The classic four-zone model of lung blood flow distribution has been questioned. We asked whether the effect of positive end-expiratory pressure (PEEP) is different between the prone and supine position for lung tissue in the same zonal condition. Anesthetized and mechanically ventilated prone (n = 6) and supine (n = 5) sheep were studied at 0, 10, and 20 cm H2O PEEP. Perfusion was measured with intravenous infusion of radiolabeled 15-microm microspheres. The right lung was dried at total lung capacity and diced into pieces (approximately 1.5 cm3), keeping track of the spatial location of each piece. Radioactivity per unit weight was determined and normalized to the mean value for each condition and animal. In the supine posture, perfusion to nondependent lung regions decreased with little relative perfusion in nondependent horizontal lung planes at 10 and 20 cm H2O PEEP. In the prone position, the effect of PEEP was markedly different with substantial perfusion remaining in nondependent lung regions and even increasing in these regions with 20 cm H2O PEEP. Vertical blood flow gradients in zone II lung were large in supine, but surprisingly absent in prone, animals. Isogravitational perfusion heterogeneity was smaller in prone than in supine animals at all PEEP levels. Redistribution of pulmonary perfusion by PEEP ventilation in supine was largely as predicted by the zonal model in marked contrast to the findings in prone. The differences between postures in blood flow distribution within zone II strongly indicate that factors in addition to pulmonary arterial, venous, and alveolar pressure play important roles in determining perfusion distribution in the in situ lung. We suggest that regional variation in lung volume through the effect on vascular resistance is one such factor and that chest wall conformation and thoracic contents determine regional lung volume.  相似文献   

8.
We hypothesized that exposure to hypergravity in the supine and prone postures causes a redistribution of pulmonary blood flow to dependent lung regions. Four normal subjects were exposed to hypergravity by use of a human centrifuge. Regional lung perfusion was estimated by single-photon-emission computed tomography (SPECT) after administration of (99m)Tc-labeled albumin macroaggregates during normal and three times normal gravity conditions in the supine and prone postures. All images were obtained during normal gravity. Exposure to hypergravity caused a redistribution of blood flow from dependent to nondependent lung regions in all subjects in both postures. We speculate that this unexpected and paradoxical redistribution is a consequence of airway closure in dependent lung regions causing alveolar hypoxia and hypoxic vasoconstriction. Alternatively, increased vascular resistance in dependent lung regions is caused by distortion of lung parenchyma. The redistribution of blood flow is likely to attenuate rather than contribute to the arterial desaturation caused by hypergravity.  相似文献   

9.
Gravity-dependent changes of regional lung function were studied during normogravity, hypergravity, and microgravity induced by parabolic flights. Seven healthy subjects were followed in the right lateral and supine postures during tidal breathing, forced vital capacity, and slow expiratory vital capacity maneuvers. Regional 1) lung ventilation, 2) lung volumes, and 3) lung emptying behavior were studied in a transverse thoracic plane by functional electrical impedance tomography (EIT). The results showed gravity-dependent changes of regional lung ventilation parameters. A significant effect of gravity on regional functional residual capacity with a rapid lung volume redistribution during the gravity transition phases was established. The most homogeneous functional residual capacity distribution was found at microgravity. During vital capacity and forced vital capacity in the right lateral posture, the decrease in lung volume on expiration was larger in the right lung region at all gravity phases. During tidal breathing, the differences in ventilation magnitudes between the right and left lung regions were not significant in either posture or gravity phase. A significant nonlinearity of lung emptying was determined at normogravity and hypergravity. The pattern of lung emptying was homogeneous during microgravity.  相似文献   

10.
The gravity dependence of phases III (IIIa and IIIb), IV, and V of simultaneously performed He-bolus and N2-resident gas single-breath washout curves was studied in different body positions by the technique of 180 degrees body inversion between inspiration and expiration. Phase IIIa was mainly determined by nongravitational factors. Phase IIIb was influenced by gravitational, as well as nongravitational, factors. The former were more important with the bolus method in both lateral decubitus positions and the latter with the N2 method in the prone and supine positions. Phases IV and V were mainly gravity dependent. The difference in gravity dependence between the He and N2 methods appeared to be correlated with the vertical interregional concentration gradients of both gases; indeed the vertical gradient was larger for the 133Xe bolus inhaled at residual volume (which is comparable to the He-bolus distribution) than for the 133Xe residual volume-to-total lung capacity ratio (which is comparable to the N2-resident gas distribution). The greater gravity dependence in the lateral decubitus positions than in the supine or prone postures was related to the larger vertical interregional concentration difference as well as to the more pronounced sequential ventilation in the former positions. Finally the negligible effect of gravity on phase IIIa, its moderate effect on phase IIIb, and its predominant effect on phases IV and V were in agreement with the increased sequential filling and emptying due to gravity near residual volume.  相似文献   

11.
Prone posture increases cardiac output and improves pulmonary gas exchange. We hypothesized that, in the supine posture, greater compression of dependent lung limits regional blood flow. To test this, MRI-based measures of regional lung density, MRI arterial spin labeling quantification of pulmonary perfusion, and density-normalized perfusion were made in six healthy subjects. Measurements were made in both the prone and supine posture at functional residual capacity. Data were acquired in three nonoverlapping 15-mm sagittal slices covering most of the right lung: central, middle, and lateral, which were further divided into vertical zones: anterior, intermediate, and posterior. The density of the entire lung was not different between prone and supine, but the increase in lung density in the anterior lung with prone posture was less than the decrease in the posterior lung (change: +0.07 g/cm(3) anterior, -0.11 posterior; P < 0.0001), indicating greater compression of dependent lung in supine posture, principally in the central lung slice (P < 0.0001). Overall, density-normalized perfusion was significantly greater in prone posture (7.9 +/- 3.6 ml.min(-1).g(-1) prone, 5.1 +/- 1.8 supine, a 55% increase; P < 0.05) and showed the largest increase in the posterior lung as it became nondependent (change: +71% posterior, +58% intermediate, +31% anterior; P = 0.08), most marked in the central lung slice (P < 0.05). These data indicate that central posterior portions of the lung are more compressed in the supine posture, likely by the heart and adjacent structures, than are central anterior portions in the prone and that this limits regional perfusion in the supine posture.  相似文献   

12.
Strength of pulmonary vascular response to regional alveolar hypoxia.   总被引:1,自引:0,他引:1  
Regional alveolar hypoxia in the lung induces regional pulmonary vasoconstriction which diverts blood flow from the hypoxic area. However, the predominant determinant of the distribution of perfusion in the normal erect lung is gravity so that more perfusion occurs at the base than at the apex. To determine the strength of the regional alveolar hypoxic response in diverting flow with or against the gravity gradient a divided tracheal cannula was placed in anesthetized dogs and unilateral alveolar hypoxia created by venilating one lung with nitrogen while ventilating the other lung with oxygen to preserve normal systemic oxygentation. Scintigrams of the distribution of perfusion obtained with intravenous 13-N and the MGH positron camera revealed a 34 and 32 per cent decrease in perfusion to the hypoxic lung in the supine and erect positions and a 26 per cent decrease in the decubitus position with the hypoxic lung dependent (P equal to 0.94 from supine shift), indicating nearly equal vasoconstriction with shift of perfusion away from the hypoxic lung in all positions. Analysis of regional shifts in perfusion revealed an equal vasoconstrictor response from apex to base in the supine position but a greater response in the lower lung zones in the erect position where perfusion was also greatest.  相似文献   

13.
Gravity is a minor determinant of pulmonary blood flow distribution   总被引:9,自引:0,他引:9  
Regional pulmonary blood flow in dogs under zone 3 conditions was measured in supine and prone postures to evaluate the linear gravitational model of perfusion distribution. Flow to regions of lung that were 1.9 cm3 in volume was determined by injection of radiolabeled microspheres in both postures. There was marked perfusion heterogeneity within isogravitational planes (coefficient of variation = 42.5%) as well as within gravitational planes (coefficient of variation = 44.2 and 39.2% in supine and prone postures, respectively; P = 0.02). On average, vertical height explained only 5.8 and 2.4% of the flow variability in the supine and prone postures, respectively. Whereas the gravitational model predicts that regional flows should be negatively correlated when measured in supine and prone postures, flows in the two postures were positively correlated, with an r2 of 0.708 +/- 0.050. Regional perfusion as a function of distance from the center of a lung explained 13.4 and 10.8% of the flow variability in the supine and prone postures, respectively. A linear combination of vertical height and radial distance from the centers of each lung provided a better-fitting model but still explained only 20.0 and 12.0% of the flow variability in the supine and prone postures, respectively. The entire lung was searched for a region of contiguous lung pieces (22.8 cm3) with high flow. Such a region was found in the dorsal area of the lower lobes in six of seven animals, and flow to this region was independent of posture. Under zone 3 conditions, neither gravity nor radial location is the principal determinant of regional perfusion distribution in supine and prone dogs.  相似文献   

14.
The main purpose of this study was to find out whether the dominant dorsal lung perfusion while supine changes to a dominant ventral lung perfusion while prone. Regional distribution of pulmonary blood flow was determined in 10 healthy volunteers. The subjects were studied in both prone and supine positions with and without lung distension caused by 10 cmH2O of continuous positive airway pressure (CPAP). Radiolabeled macroaggregates of albumin, rapidly trapped by pulmonary capillaries in proportion to blood flow, were injected intravenously. Tomographic gamma camera examinations (single-photon-emission computed tomography) were performed after injections in the different positions. All data acquisitions were made with the subject in the supine position. CPAP enhanced perfusion differences along the gravitational axis, which was more pronounced in the supine than prone position. Diaphragmatic sections of the lung had a more uniform pulmonary blood flow distribution in the prone than supine position during both normal and CPAP breathing. It was concluded that the dominant dorsal lung perfusion observed when the subjects were supine was not changed into a dominant ventral lung perfusion when the subjects were prone. Lung perfusion was more uniformly distributed in the prone compared with in the supine position, a difference that was more marked during total lung distension (CPAP) than during normal breathing.  相似文献   

15.
The aim of the study was to validate a nonradioactive method for relative blood flow measurements in severely injured lungs that avoids labor-intensive tissue processing. The use of fluorescent-labeled microspheres was compared with the standard radiolabeled-microsphere method. In seven sheep, lung injury was established by using oleic acid. Five pairs of radio- and fluorescent-labeled microspheres were injected before and after established lung injury. Across all animals, 175 pieces were selected randomly. The radioactivity of each piece was determined by using a scintillation counter. The fluorescent dye was extracted from each piece with a solvent without digestion or filtering. The fluorescence was determined with an automated fluorescent spectrophotometer. Perfusion was calculated for each piece from both the radioactivity and fluorescence and volume normalized. Correlations between flow determined by the two methods were in the range from 0.987 +/- 0.007 (SD) to 0.991 +/- 0.002 (SD) after 9 days of soaking. Thus the fluorescent microsphere technique is a valuable tool for investigating regional perfusion in severely injured lungs and can replace radioactivity.  相似文献   

16.
Triangularis sterni muscle use in supine humans   总被引:5,自引:0,他引:5  
The electrical activity of the triangularis sterni (transversus thoracis) muscle was studied in supine humans during resting breathing and a variety of respiratory and nonrespiratory maneuvers known to bring the abdominal muscles into action. Twelve normal subjects, of whom seven were uninformed and untrained, were investigated. The electromyogram of the triangularis sterni was recorded using a concentric needle electrode, and it was compared with the electromyograms of the abdominal (external oblique and rectus abdominis) muscles. The triangularis sterni was usually silent during resting breathing. In contrast, the muscle was invariably activated during expiration from functional residual capacity, expulsive maneuvers, "belly-in" isovolume maneuvers, static head flexion and trunk rotation, and spontaneous events such as speech, coughing, and laughter. When three trained subjects expired voluntarily with considerable recruitment of the triangularis sterni and no abdominal muscle activity, rib cage volume decreased and abdominal volume increased. These results indicate that unlike in the dog, spontaneous quiet expiration in supine humans is essentially a passive process; the human triangularis sterni, however, is a primary muscle of expiration; and its neural activation is largely coupled with that of the abdominals. The triangularis sterni probably contributes to the deflation of the rib cage during active expiration.  相似文献   

17.
Mixing for two gases of markedly different gaseous diffusivity, helium (He) (mol wt = 4) and sulfur hexafluoride (SF6) (mol wt = 146) has been studied by a rebreathing method in different postures. In nine normal subjects duplicate measurements were made in the erect (seated), supine, and lateral decubitus posture, at a constant tidal volume (700 ml) and frequency (1 Hz) starting from functional residual capacity (FRC). Additional measurements were made on four of the subjects, rebreathing seated erect at a volume similar to the relaxed FRC supine and supine at a volume similar to the relaxed FRC seated. In the supine posture the mean breath number to reach 99% equilibrium (n99), was not significantly different for the two gases, 8.9 for He and 9.8 for SF6. There was a difference (P less than 0.01) when erect; n99 (He) = 8.2 and n99 (SF6) = 10.9. The greatest He-SF6 difference (P less than 0.001) was in the lateral decubitus position n99 (He) = 10.1 and n99 (SF6) = 15.9. The mean relaxed FRC as percent of seated was 71% supine and 75% in lateral decubitus posture. Rebreathing seated at a lower volume did not abolish the He-SF6 mixing difference nor did rebreathing at a higher volume when supine induce a He-SF6 mixing difference. Thus the effect of posture on gas mixing cannot be due solely to lung volume and must represent a convective and diffusive dependent change in the distribution of ventilation per unit lung volume.  相似文献   

18.
The lung is profoundly affected by gravity. The absence of gravity (microgravity) removes the mechanical stresses acting on the lung paranchyma itself, resulting in a reduction in the deformation of the lung due to its own weight, and consequently altering the distribution of fresh gas ventilation within the lung. There are also changes in the mechanical forces acting on the rib cage and abdomen, which alters the manner in which the lung expands. The other way in which microgravity affects the lung is through the removal of the gravitationally induced hydrostatic gradients in vascular pressures, both within the lung itself, and within the entire body. The abolition of a pressure gradient within the pulmonary circulation would be expected to result in a greater degree of uniformity of blood flow within the lung, while the removal of the hydrostatic gradient within the body should result in an increase in venous return and intra-thoracic blood volume, with attendant changes in cardiac output, stroke volume, and pulmonary diffusing capacity. During the 9 day flight of Spacelab Life Sciences-1 (SLS-1) we collected pulmonary function test data on the crew of the mission. We compared the results obtained in microgravity with those obtained on the ground in both the standing and supine positions, preflight and in the week immediately following the mission. A number of the tests in the package were aimed at studying the anticipated changes in cardiopulmonary function, and we report those in this communication.  相似文献   

19.
To compare the relative contributions of gravity and vascular structure to the distribution of pulmonary blood flow, we flew with pigs on the National Aeronautics and Space Administration KC-135 aircraft. A series of parabolas created alternating weightlessness and 1.8-G conditions. Fluorescent microspheres of varying colors were injected into the pulmonary circulation to mark regional blood flow during different postural and gravitational conditions. The lungs were subsequently removed, air dried, and sectioned into approximately 2 cm(3) pieces. Flow to each piece was determined for the different conditions. Perfusion heterogeneity did not change significantly during weightlessness compared with normal and increased gravitational forces. Regional blood flow to each lung piece changed little despite alterations in posture and gravitational forces. With the use of multiple stepwise linear regression, the contributions of gravity and vascular structure to regional perfusion were separated. We conclude that both gravity and the geometry of the pulmonary vascular tree influence regional pulmonary blood flow. However, the structure of the vascular tree is the primary determinant of regional perfusion in these animals.  相似文献   

20.
In normal gravity, lung diffusing capacity (DL(CO)) and lung tissue volume (LTV; including pulmonary capillary blood volume) change in concert, for example, during shifts between upright and supine. Accordingly, DL(CO) and LTV might be expected to decrease together in sitting subjects in hypergravity due to peripheral pooling of blood and reduced central blood volume. Nine sitting subjects in a human centrifuge were exposed to one, two, and three times increased gravity in the head-to-feet direction (G(z+)) and rebreathed a gas containing trace amounts of acetylene and carbon monoxide. DL(CO) was 25.2 +/- 2.6, 20.0 +/- 2.1, and 16.7 +/- 1.7 ml. min(-1). mbar(-1) (means +/- SE) at 1, 2, and 3 G(z+), respectively (ANOVA P < 0.001). Corresponding values for LTV increased from 541 +/- 34 to 677 +/- 43, and 756 +/- 71 ml (P < 0.001) at 2 and 3 G(z+). Results are compatible with sequestration of blood in the dependent part of the pulmonary circulation just as in the systemic counterpart. DL(CO,) which under normoxic conditions is mainly determined by its membrane component, decreased despite an increased pulmonary capillary blood volume, most likely as a consequence of a less homogenous distribution of alveolar volume with respect to pulmonary capillary blood volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号