首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock   总被引:22,自引:0,他引:22  
The role of mPer1 and mPer2 in regulating circadian rhythms was assessed by disrupting these genes. Mice homozygous for the targeted allele of either mPer1 or mPer2 had severely disrupted locomotor activity rhythms during extended exposure to constant darkness. Clock gene RNA rhythms were blunted in the suprachiasmatic nucleus of mPer2 mutant mice, but not of mPER1-deficient mice. Peak mPER and mCRY1 protein levels were reduced in both lines. Behavioral rhythms of mPer1/mPer3 and mPer2/mPer3 double-mutant mice resembled rhythms of mice with disruption of mPer1 or mPer2 alone, respectively, confirming the placement of mPer3 outside the core circadian clockwork. In contrast, mPer1/mPer2 double-mutant mice were immediately arrhythmic. Thus, mPER1 influences rhythmicity primarily through interaction with other clock proteins, while mPER2 positively regulates rhythmic gene expression, and there is partial compensation between products of these two genes.  相似文献   

6.
Loop S  Katzer M  Pieler T 《EMBO reports》2005,6(4):341-347
Receptor-mediated nucleocytoplasmic transport of clock proteins is an important, conserved element of the core mechanism for circadian rhythmicity. A systematic analysis of the nuclear export characteristics for the different murine period (mPER) and cryptochrome (mCRY) proteins using Xenopus oocytes as an experimental system demonstrates that all three mPER proteins, but neither mCRY1 nor mCRY2, are exported if injected individually. However, nuclear injection of heterodimeric complexes that contain combinations of mPER and mCRY proteins shows that mPER1 serves as an export adaptor for mCRY1 and mCRY2. Functional analysis of dominant-negative mPER1 variants designed either to sequester mPER3 to the cytoplasm or to inhibit nuclear export of mCRY1/2 in synchronized, stably transfected fibroblasts suggests that mPER1-mediated export of mCRY1/2 defines an important new element of the core clock machinery in vertebrates.  相似文献   

7.
Posttranslational mechanisms regulate the mammalian circadian clock.   总被引:36,自引:0,他引:36  
  相似文献   

8.
9.
10.
Cryptochrome 1 and 2 act as essential components of the central and peripheral circadian clocks for generation of circadian rhythms in mammals. Here we show that mouse cryptochrome 2 (mCRY2) is phosphorylated at Ser-557 in the liver, a well characterized peripheral clock tissue. The Ser-557-phosphorylated form accumulates in the liver during the night in parallel with mCRY2 protein, and the phosphorylated form reaches its maximal level at late night, preceding the peak-time of the protein abundance by approximately 4 h in both light-dark cycle and constant dark conditions. The Ser-557-phosphorylated form of mCRY2 is localized in the nucleus, whereas mCRY2 protein is located in both the cytoplasm and nucleus. Importantly, phosphorylation of mCRY2 at Ser-557 allows subsequent phosphorylation at Ser-553 by glycogen synthase kinase-3beta (GSK-3beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. As assessed by phosphorylation of GSK-3beta at Ser-9, which negatively regulates the kinase activity, GSK-3beta exhibits a circadian rhythm in its activity with a peak from late night to early morning when Ser-557 of mCRY2 is highly phosphorylated. Altogether, the present study demonstrates an important role of sequential phosphorylation at Ser-557/Ser-553 for destabilization of mCRY2 and illustrates a model that the circadian regulation of mCRY2 phosphorylation contributes to rhythmic degradation of mCRY2 protein.  相似文献   

11.
In mammals, mCRY proteins are essential and are major negative elements in circadian feedback loops. In this study, robust circadian clock oscillation was present even under conditions with constitutive over-expression of mCry1 in rat-1 cells. Rat-1 cells were produced to stably express mPer2 promoter-driven luciferase reporter, in which mCry1 was overexpressed under a tetracycline-dependent gene expression (Tet-On) system. Using these cells, we show that circadian clock oscillations in rat-1 fibroblasts persist when the mCRY1 protein constitutively accumulates in the nuclei.  相似文献   

12.
Cryptochrome1 and 2 play a critical role in the molecular oscillations of the circadian clocks of central and peripheral tissues in mammals. Mouse Cryptochrome2 (mCRY2) is phosphorylated at Ser557 in the liver, in which the Ser557-phosphorylated form accumulates during the night in parallel with mCRY2 protein. Phosphorylation of mCRY2 at Ser557 allows subsequent phosphorylation at Ser553 by glycogen synthase kinase-3β (GSK-3β), resulting in efficient degradation of mCRY2 by a proteasome pathway. In the present study, we found that mCRY2 is phosphorylated at Ser557 also in the region of the mouse brain containing the suprachiasmatic nucleus (SCN), the central circadian clock tissue. Daily fluctuation of the Ser557-phosphorylation level in the SCN region suggests an important role of sequential phosphorylation of Ser557 and Ser553 in the rhythmic degradation of mCRY2 in both central and peripheral clocks of mice.  相似文献   

13.
Cryptochrome1 and 2 play a critical role in the molecular oscillations of the circadian clocks of central and peripheral tissues in mammals. Mouse Cryptochrome2 (mCRY2) is phosphorylated at Ser557 in the liver, in which the Ser557‐phosphorylated form accumulates during the night in parallel with mCRY2 protein. Phosphorylation of mCRY2 at Ser557 allows subsequent phosphorylation at Ser553 by glycogen synthase kinase‐3β (GSK‐3β), resulting in efficient degradation of mCRY2 by a proteasome pathway. In the present study, we found that mCRY2 is phosphorylated at Ser557 also in the region of the mouse brain containing the suprachiasmatic nucleus (SCN), the central circadian clock tissue. Daily fluctuation of the Ser557‐phosphorylation level in the SCN region suggests an important role of sequential phosphorylation of Ser557 and Ser553 in the rhythmic degradation of mCRY2 in both central and peripheral clocks of mice.  相似文献   

14.
The mammalian circadian regulatory proteins PER1 and PER2 undergo a daily cycle of accumulation followed by phosphorylation and degradation. Although phosphorylation-regulated proteolysis of these inhibitors is postulated to be essential for the function of the clock, inhibition of this process has not yet been shown to alter mammalian circadian rhythm. We have developed a cell-based model of PER2 degradation. Murine PER2 (mPER2) hyperphosphorylation induced by the cell-permeable protein phosphatase inhibitor calyculin A is rapidly followed by ubiquitination and degradation by the 26S proteasome. Proteasome-mediated degradation is critically important in the circadian clock, as proteasome inhibitors cause a significant lengthening of the circadian period in Rat-1 cells. CKIepsilon (casein kinase Iepsilon) has been postulated to prime PER2 for degradation. Supporting this idea, CKIepsilon inhibition also causes a significant lengthening of circadian period in synchronized Rat-1 cells. CKIepsilon inhibition also slows the degradation of PER2 in cells. CKIepsilon-mediated phosphorylation of PER2 recruits the ubiquitin ligase adapter protein beta-TrCP to a specific site, and dominant negative beta-TrCP blocks phosphorylation-dependent degradation of mPER2. These results provide a biochemical mechanism and functional relevance for the observed phosphorylation-degradation cycle of mammalian PER2. Cell culture-based biochemical assays combined with measurement of cell-based rhythm complement genetic studies to elucidate basic mechanisms controlling the mammalian clock.  相似文献   

15.
Cryptochrome1 and 2 play a critical role in the molecular oscillations of the circadian clocks of central and peripheral tissues in mammals. Mouse Cryptochrome2 (mCRY2) is phosphorylated at Ser557 in the liver, in which the Ser557-phosphorylated form accumulates during the night in parallel with mCRY2 protein. Phosphorylation of mCRY2 at Ser557 allows subsequent phosphorylation at Ser553 by glycogen synthase kinase-3beta (GSK-3beta), resulting in efficient degradation of mCRY2 by a proteasome pathway. In the present study, we found that mCRY2 is phosphorylated at Ser557 also in the region of the mouse brain containing the suprachiasmatic nucleus (SCN), the central circadian clock tissue. Daily fluctuation of the Ser557-phosphorylation level in the SCN region suggests an important role of sequential phosphorylation of Ser557 and Ser553 in the rhythmic degradation of mCRY2 in both central and peripheral clocks of mice.  相似文献   

16.
17.
18.
Circadian clock function depends on the tightly regulated exclusion or presence of clock proteins within the nucleus. A newly induced long-period timeless mutant, tim(blind), encodes a constitutively hypophosphorylated TIM protein. The mutant protein is not properly degraded by light, and tim(blind) flies show abnormal behavioral responses to light pulses. This is probably caused by impaired nuclear accumulation of TIM(BLIND) protein, which we observed in brain pacemaker neurons and photoreceptor cells of the compound eye. tim(blind) encodes two closely spaced amino acid changes compared to the wild-type TIM protein; one of them is within a putative nuclear export signal of TIM. Under constant conditions, tim(blind) flies exhibit 26-hr free-running locomotor rhythms, which are not correlated with a period lengthening of eclosion rhythms and period-luciferase reporter-gene oscillations. Therefore it seems possible that TIM--in addition to its well-established role as core clock factor--functions as a clock output factor, involved in determining the period length of adult locomotor rhythms.  相似文献   

19.
Various day-night rhythms, observed at molecular, cellular, and behavioral levels, are governed by an endogenous circadian clock, predominantly functioning in the hypothalamic suprachiasmatic nucleus (SCN). A class of clock genes, mammalian Period (mPer), is known to be rhythmically expressed in SCN neurons, but the correlation between mPER protein levels and autonomous rhythmic activity in SCN neurons is not well understood. Therefore, we blocked mPer translation using antisense phosphothioate oligonucleotides (ODNs) for mPer1 and mPer2 mRNAs and examined the effects on the circadian rhythm of cytosolic Ca2+ concentration and action potentials in SCN slice cultures. Treatment with mPer2 ODNs (20microM for 3 days) but not randomized control ODNs significantly reduced mPER2 immunoreactivity (-63%) in the SCN. Nevertheless, mPer1/2 ODNs treatment inhibited neither action potential firing rhythms nor cytosolic Ca2+ rhythms. These suggest that circadian rhythms in mPER protein levels are not necessarily coupled to autonomous rhythmic activity in SCN neurons.  相似文献   

20.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号