首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The principal in vivo oxygenase products of arachidonic acid and linoleic acid in psoriatic skin scales are 12-hydroxyeicosatetraenoic acid (R/S ratio = 5.7), 13-hydroxyoctadecadienoic acid (S/R = 1.9), and 9-hydroxyoctadecadienoic acid (R/S = 2.4). Definition of the enzymatic origin of these fatty acid derivatives is an important step in assessing their possible role in the pathogenesis of psoriasis. Psoriatic skin scales were incubated with radiolabeled arachidonic acid and linoleic acid and the monohydroxylated derivatives produced in vitro were characterized. The products of incubation with [3H]arachidonic acid were an enantiopure 15(S)-[3H]hydroxyeicosatetraenoic acid and a nonracemic mixture of the 12-[3H]hydroxyeicosatetraenoic acid steroisomers (R/S ratio = 4.5). An enantiopure 13(S)-[14C]hydroxyoctadecadienoic acid was produced from [14C]linoleic acid. No radiolabeled products were derived from incubations with heat-denatured scales. These results provide evidence for two distinct oxygenase activities that are preserved in psoriatic skin scales. One is that of an omega-6 oxygenase with strict (S) stereospecificity, consistent with the activity of a lipoxygenase. This enzyme activity appears to be similar to that of the 15-lipoxygenase which has been described in cultured human keratinocytes. The second activity is that of an arachidonic acid 12(R)-oxygenase that has not been observed in normal human epidermis but which appears to be expressed in psoriatic epidermis.  相似文献   

2.
Arachidonate 15-lipoxygenase was purified from human eosinophil-enriched leukocytes after showing that 15-lipoxygenase activity was 100-fold greater in eosinophils than in neutrophils. Partial purification was achieved using ammonium sulfate precipitation, cation-exchange and hydrophobic-interaction chromatography. New evidence is presented suggesting that 15-lipoxygenase has electrostatic and hydrophobic properties distinct from 5-lipoxygenase. In addition, ATP is shown to inhibit, and phosphatidylcholine is shown to stimulate, 15-lipoxygenase, suggesting a regulatory role for these compounds in the lipoxygenation of arachidonic acid.  相似文献   

3.
The data on whether T cells produce leukotrienes or other 5-lipoxygenase metabolites of arachidonic acid is conflicting. We report that exogenous arachidonic acid added to phytohemagglutin-stimulated human T cells profoundly inhibits leukotriene B4 production, with 90% inhibition caused by 10(-6) M arachidonic acid. The 12- and 15-lipoxygenase pathways were also inhibited by arachidonic acid. Recent reports that human T cells produce no 5-lipoxygenase metabolites of arachidonic acid might be explained by the fact that the studies used greater than or equal to 10(-5)M arachidonic acid in the incubation media.  相似文献   

4.
Epidermal Langerhans cells are macrophage-like la+ leukocytes that are critically involved in cutaneous immune reactions. Because macrophages exert their immunoregulatory activity in part by generation of oxygenated arachidonic acid metabolites, we systematically studied arachidonic acid transformations by purified guinea pig Langerhans cells and compared them with mixed epidermal cells and Langerhans cell-depleted keratinocytes. Products formed from arachidonic acid by cell homogenates were measured after thin-layer or reverse-phase high-pressure liquid chromatographic separation. In addition, leukotriene B4 and C4 formation was assessed in supernatants of Ca ionophore A23187-challenged intact cells by radioimmunoassay. Mixed epidermal cells converted arachidonic acid predominantly via cyclooxygenase and 12-lipoxygenase pathways. The main products were prostaglandin D2 (PGD2) and 12-hydroxyeicosatetraenoic acid (12-Hete), although significant amounts of PGE2, PGF2 alpha, and 6-keto-PGF1 alpha were formed as well. PGD2 synthesis was dependent on the presence of reduced glutathione. The product spectrum formed by Langerhans cell-depleted keratinocytes was virtually indistinguishable from mixed epidermal cells. In contrast, Langerhans cells showed a markedly different metabolism of arachidonic acid. They exhibited an exceedingly high PGD2-generating capacity, whereas only minor amounts of 12-HETE and very low amounts of other prostaglandins were synthesized. The PGD2/12-HETE ratio was 1.22 for mixed epidermal cells and 4.37 for Langerhans cells. Leukotriene production from exogenous or endogenous arachidonic acid could not be demonstrated by either radioenzymatic or radioimmunologic detection methods. We conclude that guinea pig Langerhans cells transform arachidonic acid predominantly to PGD2, which might mediate significant immunoregulatory, inflammatory, and antitumoral activity in the skin.  相似文献   

5.
The metabolism of arachidonic acid and 15-HPETE was studied in a human promyelocytic cell line (HL-60). Upon exposure to DMSO, HL-60 cells undergo differentiation and acquire a 15-lipoxygenase activity while undifferentiated cells challenged with either arachidonic acid or 15-HPETE did not enzymatically transform these precursors. Products of the arachidonic acid 15-lipoxygenase pathway were identified by HPLC. UV-absorption and gas chromatography-mass spectrometry. Results indicate that upon differentiation HL-60 cells express a 15-lipoxygenase activity as well as the ability to transform 15-HPETE to 8,15-DHETEs and 14,15-DHETE. Moreover, these findings suggest that products of the 15-lipoxygenase cascade may be generated by a single cell system.  相似文献   

6.
Arachidonic acid metabolism in ionophore A23187-activated human polymorphonuclear leukocytes (PMNs) proceeds predominantly via the 5-lipoxygenase pathway in comparison to metabolism by the 15-lipoxygenase route. Products of both lipoxygenase pathways appear to be involved in the mediation of inflammatory reactions. Pretreatment of polymorphonuclear leukocytes with micromolar amounts of the platelet-derived 12-lipoxygenase product 12-hydroxy-5,8,10,14- eicosatetraenoic acid (12-HETE) prior to the addition of A23187 and [14C]arachidonic acid resulted in the unexpected dose-dependent stimulation of the 15-lipoxygenase pathway, as evidenced by the formation of [14C]15-HETE. A concomitant inhibition of the 5-lipoxygenase pathway was also observed. The structural identity of 15-HETE was confirmed by retention times on straight-phase and reverse-phase high pressure liquid chromatography in comparison with an authentic standard, radioimmunoassay, and chemical derivatization. When other isomeric HETEs were tested, the order of stimulatory potencies was 15-HETE greater than 12-HETE greater than 5-HETE. When arachidonic acid metabolism via the 5-lipoxygenase route was inhibited by nordihydroguaiaretic acid, previously ineffective concentrations of exogenous 12-HETE were now able to stimulate the polymorphonuclear leukocyte 15-lipoxygenase. Thus, blockade of the 5-lipoxygenase pathway appeared to be a prerequisite for the activation of the 15-lipoxygenase. The HETE-induced activation of the 15-lipoxygenase occurred within 1-2 min, was a reversible process, and was enhanced in the presence of A23187. In nine donors tested, up to 14-fold stimulation of [14C]15-HETE production was observed. Our results indicate that endogenous HETEs can have a dual role in the post-phospholipase regulation of arachidonic acid metabolism since they can act as physiological stimulators of the 15-lipoxygenase as well as inhibitors of the 5-lipoxygenase.  相似文献   

7.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

8.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is greater than 15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

9.
To determine identities of mediators and mechanisms for their release from pulmonary airway epithelial cells, we examined the capacities of epithelial cells from human, dog and sheep airways to incorporate, release and oxygenate arachidonic acid. Purified cell suspensions were incubated with radiolabeled arachidonic acid and/or ionophore A23187; fatty acid esterification and hydrolysis were traced chromatographically, and oxygenated metabolites were identified using high-pressure liquid chromatography and mass-spectrometry. In each species, cellular uptake of 10 nM arachidonic acid was concentrated in the phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine fractions, and subsequent incubation with 5 microM A23187 caused release of 10-12% of the radiolabeled pool selectively from phosphatidylcholine and phosphatidylinositol. By contrast, the products of arachidonic acid oxygenation were species-dependent and in the case of human cells were also novel: A23187-stimulated human epithelial cells converted arachidonic acid predominantly to 15-hydroxyeicosatetraenoic acid (15-HETE) and two distinct 8,15-diols in addition to prostaglandin (PG) E2 and PGF2 alpha. Cell incubation with exogenous arachidonic acid (2.0-300 microM) led to progressively larger amounts of 15-HETE and the dihydroxy, epoxyhydroxy and keto acids characteristic of arachidonate 15-lipoxygenase. Both dog and sheep cells converted exogenous or endogenous arachidonic acid to low levels of 5-lipoxygenase products, including leukotriene B4 without significant 15-lipoxygenase activity. In the cyclooxygenase series, sheep cells selectively released PGE2, while dog cells generated predominantly PGD2. The findings demonstrate that stereotyped esterification and phospholipase activities are expressed at uniform levels among airway epithelial cells from these species, but pathways for oxygenating arachidonic acid allow mediator diversity depending greatly on species and little on arachidonic acid presentation.  相似文献   

10.
Human uterine cervix possesses a high 12-lipoxygenase activity; this enzyme has been isolated in a purified form from the squamous epithelial region of human cervix and its major properties have been investigated. Enzyme activity was present in all subcellular fractions obtained by centrifugation; the highest specific activity was associated with the microsome fraction (160,000 X g pellet). Purification of the enzyme was achieved by acetone precipitation, ion exchange chromatography on CM-cellulose and affinity chromatography on linoleyl-aminoethyl-Sepharose. The product from the incubation of sodium [1-14C]arachidonate with crude enzyme extracts co-chromatographed with authentic 12-hydroxyeicosatetraenoic acid, but the purified enzyme gave a product that behaved like the 12-hydroperoxy derivative. The enzyme had optimum activity at pH 6.5, a Km of 15 microM for arachidonic acid and was stimulated by ATP and Ca2+. Enzyme activity was inhibited by esculetin, nordihydroguaiaretic acid, eicosatetraynoic acid, detergents at concentrations greater than 0.1% (w/v) and preincubation of substrate with GSH and GSH peroxidase. The occurrence of a high 12-lipoxygenase activity is discussed in relation to the specific physiological functions of this tissue.  相似文献   

11.
We have previously reported that 15-hydroxyeicosatetraenoic acid (15-HETE) stimulated the 5-lipoxygenase in the murine PT-18 mast/basophil cell line to produce leukotriene B4 and 5-HETE from exogenously added arachidonic acid. In order to determine the structural requirements in the HETE molecule that are necessary for the activation of this 5-lipoxygenase, various isomeric HETEs, derivatives and analogs were prepared, purified and tested. The order of stimulatory potencies was: 15-HETE acetate greater than 15-HETE = 15-hydroperoxyeicosatetraenoic acid (15-HPETE) greater than 5-HPETE = 12-HPETE greater than 5-HETE. 15-HETE methyl ester, 12-HETE and prostaglandin E2 were ineffective over the concentration range tested. Several diHETEs were also tested. 5S,15S-DiHETE was somewhat less potent than 15-HETE, whereas both 8S,15S-diHETE and leukotriene B4 were inactive. The calcium ionophore A23187 was much less effective than 15-HETE. These structure-activity studies indicate the importance of the nature, position and location of the various functional groups in the HETE molecule and suggest that a specific recognition site is involved in the activation of the 5-lipoxygenase in PT-18 cells.  相似文献   

12.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1α promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11,14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on α-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and γ-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 μmol/45 min per mg protein by nickel–nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

13.
We report herein for the first time the formation by freshly grown garlic roots and the structural characterization of 14,15-epoxide positional analogs of the hepoxilins formed via the 15-lipoxygenase-induced oxygenation of arachidonic acid. These compounds are formed through the combined actions of a 15(S)-lipoxygenase and a hydroperoxyeicosatetraenoic acid (HPETE) isomerase. The compounds were formed when either arachidonic acid or 15-HPETE were used as substrates. Both the "A"-type and the "B"-type products are formed although the B-type compounds are formed in greater relative quantities. Chiral phase high performance liquid chromatography analysis confirmed the formation of hepoxilins from 15(S)- but not 15(R)-HPETE, indicating high stereoselectivity of the isomerase. Additionally, the lipoxygenase was of the 15(S)-type as only 15(S)-hydroxyeicosatetraenoic acid was formed when arachidonic acid was used as substrate. The structures of the products were confirmed by gas chromatography-mass spectrometry of the methyl ester trimethylsilyl ether derivatives as well as after characteristic epoxide ring opening catalytically with hydrogen leading to dihydroxy products. That 15(S)-lipoxygenase activity is of functional importance in garlic was shown by the inhibition of root growth by BW 755C, a dual cyclooxygenase/lipoxygenase inhibitor and nordihydroguaiaretic acid, a lipoxygenase inhibitor. Additional biological studies were carried out with the purified intact 14(S), 15(S)-hepoxilins, which were investigated for hepoxilin-like actions in causing the release of intracellular calcium in human neutrophils. The 14,15-hepoxilins dose-dependently caused a rise in cytosolic calcium, but their actions were 5-10-fold less active than 11(S), 12(S)-hepoxilins derived from 12(S)-HPETE. These studies provide evidence that 15(S)-lipoxygenase is functionally important to normal root growth and that HPETE isomerization into the hepoxilin-like structure may be ubiquitous; the hepoxilin-evoked release of calcium in human neutrophils, which is receptor-mediated, is sensitive to the location within the molecule of the hydroxyepoxide functionality.  相似文献   

14.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

15.
Cloned 15-lipoxygenase has been expressed for the first time in eukaryotic and prokaryotic cells. Transfection of osteosarcoma cells with a mammalian expression plasmid containing the cDNA for human reticulocyte 15-lipoxygenase resulted in cell lines that were capable of oxidizing body arachidonic acid and linoleic acid. The lipoxygenase metabolites were identified by reverse-phase and straight-phase high pressure liquid chromatography, ultraviolet spectroscopy, and direct mass spectrometry, verifying that the cDNA for 15-lipoxygenase encodes an enzyme with authentic 15-lipoxygenase activity. Incubation of the transformed cells with arachidonic acid generated 15-hydroxyeicosatetraenoic acid (HETE) and 12-HETE in a ratio of 8.6 to 1, demonstrating that 15-lipoxygenase can also perform 12-lipoxygenation. Lesser amounts of 15-keto-ETE, four isomers of 8,15-diHETE, and one isomer of 14,15-diHETE were observed. Incubation with linoleic acid generated predominantly 13-hydroxy linoleic acid. The reaction was inhibited by eicosatetraynoic acid but not by indomethacin. Antibodies to a peptide corresponding to a unique region of the predicted amino acid sequence were generated and shown to react with one major band of 70 kDa on immunoblots of human leukocyte 15-lipoxygenase. To obtain antibodies to the full length enzyme, the cDNA was subcloned into a bacterial expression vector and was expressed as a fusion with the CheY protein. The overexpressed protein was readily purified from bacteria and was shown to be immunoreactive to the peptide-derived antibody. Antibodies raised to this recombinant enzyme did not cross-react with human leukocyte 5-lipoxygenase but did identify 15-lipoxygenase in rabbit reticulocytes, human leukocytes, and tracheal epithelial cells, suggesting that the 15-lipoxygenases from these different cell types are structurally related.  相似文献   

16.
The metabolism of arachidonic acid was studied using basal and differentiated keratinocytes as well as sebaceous cells isolated from hairless mice. These disassociated cells metabolized arachidonic acid predominantly to the prostaglandin H synthase products prostaglandins E2 and D2. 12-Hydroxyheptadecatrienoic acid (HHT), prostaglandin F2 alpha, thromboxane B2 and 6-ketoprostaglandin F1 alpha were also detected. Smaller amounts of the lipoxygenase products 5-, 12- and 15-hydroxyeicosatetraenoic acids (HETEs) were also detected. The major lipoxygenase product observed was 12-HETE. No leukotrienes or dihydroxy fatty acids were observed. The identity of the metabolites was established using several high-pressure liquid chromatography solvent systems. The biosynthesis of prostaglandins E2 and D2 was very rapid and was inhibited by the addition of indomethacin to the cells. The mixed population of keratinocytes and sebaceous cells were separated into enriched fractions by metrizamide gradients and elutriation techniques. The small, undifferentiated cells had high prostaglandin H synthase and 12-lipoxygenase activity. The basal cell-enriched fractions had the highest activity. With increasing differentiation of the cells, decreased biosynthetic activity was observed. These results indicate that undifferentiated keratinocytes, that is, the basal cells, may be an important source of prostaglandins and 12-HETE but are not a source of leukotrienes for the hairless mouse. It also suggests a role for keratinocyte-derived eicosanoids in the normal physiology of epidermal differentiation.  相似文献   

17.
Arachidonate 8-lipoxygenase was identified in phorbol ester induced mouse skin. We expressed the enzyme in an Escherichia coli system using pET-15b carrying an N-terminal histidine-tag sequence. The enzyme, purified by nickel-nitrilotriacetate affinity chromatography, showed specific activity of about 0.1 micromol/min/mg of protein with arachidonic acid as a substrate. When metabolites of arachidonic acid were reduced and analyzed by reverse-phase HPLC, 8-hydroxy derivative was a major product as measured by absorbance at 235 nm. In addition, three polar compounds (I, II, and III) were detected by measuring absorbance at 270 nm. These compounds were also produced when the enzyme was incubated with 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid. Neither heat-inactivated enzyme nor mutated enzyme produced these compounds, suggesting that they are enzymatically generated. Ultraviolet spectra of these compounds showed typical triplet peaks around 270 nm, indicating that they have a triene structure. Molecular weight of these compounds was determined to be 336 by liquid chromatography-mass spectrometry, indicating that they carry two hydroxyl groups. Compounds I and III were generated even under anaerobic condition, indicating that oxygenation reaction was not required for their generation from 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid. By analogy to the reactions of 5-lipoxygenase pathway where leukotriene A4 is generated, it is suggested that 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid is converted by the 8-lipoxygenase to 8,9-epoxyeicosa-5,10,12,14-tetraenoic acid which degrades to compounds I and III by non-enzymatic reaction. In contrast, compound II was not generated under anaerobic condition, indicating that it was produced by oxygenation reaction. Taken together, 8-lipoxygenase catalyzes both dehydration reaction to yield 8,9-epoxy derivative and oxygenation reaction presumably at 15-position of 8-hydroperoxyeicosa-5,9,11,14-tetraenoic acid.  相似文献   

18.
Nasal and bronchial epithelium from normal human nasal turbinates was isolated from surgical specimens and used to study arachidonic acid metabolism. High-performance liquid chromatography analysis of cell incubations in the presence of calcium ionophore, A23187, showed the formation of 15-lipoxygenase products. The major arachidonic acid metabolite with bronchial and nasal tissue was 15-HETE identified by uv spectroscopy, coelution with the authentic standards by HPLC, and GC-mass spectrometry. The second major metabolite, formed from either arachidonic acid or 15-HPETE, was identified as 13-hydroxy-14,15-epoxy-5,8,11-eicosatetraenoic acid (15-alpha-HEPA) by uv spectroscopy, coelution with the authentic standard, and GC-mass spectrometry. In addition, two 8,15-diHETEs and two 8,15-LTs were identified by uv spectroscopy and coelution with the authentic standards by HPLC on both reverse-phase and normal-phase HPLC. Also isolated and identified were 14,15-diHETEs, and 12-HETE. Nasal epithelial cells appear to be more active than nasal bronchial cells in oxidizing arachidonic acid. However, the profile of metabolites from these normal tissue preparations was similar. The addition of 15-lipoxygenase products to nasal epithelium weakly stimulated Cl- ion secretion. These studies indicate that human pulmonary epithelial cells selectively oxidize arachidonic acid to 15-lipoxygenase metabolites.  相似文献   

19.
Mammalian 5-lipoxygenase systems exist in inactive or cryptic states and have to be stimulated in order to metabolize exogenous [14C]arachidonic acid to 5-HETE and leukotrienes. In most cells, both the activation process and the 5-lipoxygenase activity are calcium-dependent. However, the cryptic 5-lipoxygenase system in the murine PT-18 mast/basophil cell line, which can be stimulated by 15-hydroxyeicosatetraenoic acid (15-HETE), is unusual. Studies with fura-2 loaded PT-18 cells indicate that increases in cytosolic calcium do not appear to correlate with enhanced 5-lipoxygenase product formation. Thus, both the calcium ionophore ionomycin and arachidonic acid increase cytosolic calcium levels but have very little effect on [14C]5-HETE formation, whereas 15-HETE induces large increases in [14C]5-HETE production but no concomitant enhancement in cytosolic calcium is observed. Chelation of extracellular calcium by 3 mM EGTA resulted in a 30-40% inhibition of [14C]5-HETE formation induced by 15 HETE, whereas 3 mM EGTA has no appreciable effect on a crude PT-18 5-lipoxygenase homogenate. These results indicate that in PT-18 cells, calcium does not appear to play an important role in either the 15-HETE-induced activation process, or the enzymatic activity of the cryptic 5-lipoxygenase system.  相似文献   

20.
Stimulation of purified human eosinophils with 50 microM arachidonic acid leads to the production of leukotriene C4, 15-hydroxy-eicosatetraenoic acid and 15-series leukotrienes. The ratio of the amounts of leukotriene C4 and 15-lipoxygenase products was found to be strongly dependent on the arachidonic acid concentration, being relatively large at low arachidonic acid concentrations and very small at high arachidonic acid concentrations. In the presence of 1 microM platelet-activating factor a significant elevation of leukotriene C4 formation is observed, whereas the formation of 15-lipoxygenase products remains unaltered. As arachidonic acid was found to be capable of inducing a fast, transient rise in the cytosolic free Ca2+ concentration, this explains at least partly its ability to induce the Ca2+-dependent formation of leukotriene C4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号