首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to determine the solution structure of Paracoccus denitrificans cytochrome c552 by NMR, we cloned and isotopically labeled a 10.5-kDa soluble fragment (100 residues) containing the functional domain of the 18.2-kDa membrane-bound protein. Using uniformly 15N-enriched samples of cytochrome c552 in the reduced state, a variety of two-dimensional and three-dimensional heteronuclear double-resonance NMR experiments was employed to achieve complete 1H and 15N assignments. A total of 1893 distance restraints was derived from homonuclear 2D-NOESY and heteronuclear 3D-NOESY spectra; 1486 meaningful restraints were used in the structure calculations. After restrained energy minimization a family of 20 structures was obtained with rmsd values of 0.56 +/- 0. 10 A and 1.09 +/- 0.09 A for the backbone and heavy atoms, respectively. The overall topology is similar to that seen in previously reported models of this class of proteins. The global fold consists of two long helices at the N-terminus and C-terminus and three shorter helices surrounding the heme moiety; the helices are connected by well-defined loops. Comparison with the X-ray structure shows some minor differences in the positions of the Trp57 and Phe65 side-chain rings as well as the heme propionate groups.  相似文献   

2.
The crystal structure of the soluble domain of the membrane bound cytochrome c(552) (cytochrome c(552)') from Paracoccus denitrificans was determined using the multiwavelength anomalous diffraction technique and refined at 1.5 A resolution for the oxidized and at 1. 4 A for the reduced state. This is the first high-resolution crystal structure of a cytochrome c at low ionic strength in both redox states. The atomic model allowed for a detailed assessment of the structural properties including the secondary structure, the heme geometry and interactions, and the redox-coupled structural changes. In general, the structure has the same features as that of known eukaryotic cytochromes c. However, the surface properties are very different. Cytochrome c(552)' has a large strongly negatively charged surface part and a smaller positively charged area around the solvent-exposed heme atoms. One of the internal water molecules conserved in all structures of eukaryotic cytochromes c is also present in this bacterial cytochrome c. It contributes to the interactions between the side-chain of Arg36 and the heme propionate connected to pyrrole ring A. Reduction of the oxidized crystals does not influence the conformation of cytochrome c(552)' in contrast to eukaryotic cytochromes c. The oxidized cytochrome c(552)', especially the region of amino acid residues 40 to 56, appears to be more flexible than the reduced one.  相似文献   

3.
The crystal structure of Paracoccus (formerly Micrococcus) denitrificans cytochrome c550 has been solved by x-ray diffraction to a resolution of 2.45 A. In both amino acid sequence and molecular structure it is evolutionarily homologous with mitochondrial cytochrome c from eukaryotes and photosynthetic cytochrome c2 from purple non-sulfur bacteria. All of these cytochromes c have the same basic folding pattern, with surface insertions of extra amino acids in c550. Various strains of c2 have all, some, or none of the extra insertions observed in c550. The hydrophobic heme environment, position of aromatic rings, and structure and environment of the heme crevice, are virtually identical in cytochromes c55o, c, and c2. Radical changes observed at all regions on the molecular surface except the heme crevice argue for the importance of the crevice and the exposed edge of the heme in the transfer of electrons to and from the cytochrome molecule.  相似文献   

4.
A membrane-bound c-type cytochrome, c552, acts as the electron mediator between the cytochrome bc1 complex and cytochrome c oxidase in the branched respiratory chain of the bacterium Paracoccus denitrificans. Unlike in mitochondria where a soluble cytochrome c interacts with both complexes, the bacterial c552, the product of the cycM gene, shows a tripartite structure, with an N-terminal membrane anchor separated from a typical class I cytochrome domain by a highly charged region. Two derivative fragments, lacking either only the membrane spanning region or both N-terminal domains, were constructed on the genetic level, and expressed in Escherichia coli cotransformed with the ccm gene cluster encoding host-specific cytochrome c maturation factors. High levels of cytochromes c were expressed and located in the periplasm as holo-proteins; both these purified c552 fragments are functional in electron transport to oxidase, as ascertained by kinetic measurements, and will prove useful for future structural studies of complex formation by NMR and X-ray diffraction.  相似文献   

5.
Turnover of cytochrome c oxidase from Paracoccus denitrificans   总被引:2,自引:0,他引:2  
The heme aa3 type cytochrome oxidase from Paracoccus denitrificans incorporated into vesicles with phospholipid reacts during turnover much as the oxidase from mitochondria does. The spectrophotometric changes observed at various wavelengths are closely similar, and the rate is about one-half of that for beef heart oxidase under the same conditions. The rate of appearance of oxidized cytochrome c on initiation of the reaction is also similar and depends on the previous treatment of the oxidase as described by Antonini, E., Brunori, M., Colosimo, A., Greenwood, C. and Wilson, M. T. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 3128-3132. In terms of their model the resting Paracoccus enzyme is converted to the pulsed form during turnover. The effect is observed with both cytochrome c and hexamine ruthenium as reductants. With the latter a 60-fold increase in rate is observed.  相似文献   

6.
7.
8.
The size, visible absorption spectra, nature of haem and haem content suggest that the cytochrome c peroxidase of Paracoccus denitrificans is related to that of Pseudomonas aeruginosa. However, the Paracoccus enzyme shows a preference for cytochrome c donors with a positively charged 'front surface' and in this respect resembles the cytochrome c peroxidase from Saccharomyces cerevisiae. Paracoccus cytochrome c-550 is the best electron donor tested and, in spite of an acidic isoelectric point, has a markedly asymmetric charge distribution with a strongly positive 'front face'. Mitochondrial cytochromes c have a much less pronounced charge asymmetry but are basic overall. This difference between cytochrome c-550 and mitochondrial cytochrome c may reflect subtle differences in their electron transport roles. A dendrogram of cytochrome c1 sequences shows that Rhodopseudomonas viridis is a closer relative of mitochondria than is Pa. denitrificans. Perhaps a mitochondrial-type cytochrome c peroxidase may be found in such an organism.  相似文献   

9.
The nuclear estradiol receptor from chick liver was purified to apparent homogeneity by using a combination of ammonium sulfate precipitation and affinity gel chromatography. The purified receptor migrated as a single band on an SDS-polyacrylamide gel with a molecular weight of 55000 and it exhibited a sedimentation coefficient of 4 S, a dissociation constant of 1.13 nM and a steroid specificity resembling that of the receptor in crude extracts.  相似文献   

10.
Proton pump coupled to cytochrome c oxidase in Paracoccus denitrificans   总被引:12,自引:0,他引:12  
The proton translocating properties of cytochrome c oxidase in whole cells of Paracoccus denitrificans have been studied with the oxidant pulse method. leads to H+/2e- quotients have been measured with endogenous substrates, added methanol and added ascorbate (+TMPD) as reductants, and oxygen and ferricyanide as oxidants. It was found that both the observed leads to H+/O with ascorbate (+TMPD) as reductant, and the differences in proton ejection between oxygen-and ferricyanide pulses, with endogenous substrates or added methanol as a substrate, indicate that the P. denitrificans cytochrome c oxidase translocates protons with a stoichiometry of 2H+/2e-. The results presented in this and previous papers are in good agreement with recent findings concerning the mitochondrial cytochrome c oxidase, and suggest unequal charge separation by different coupling segments of the respiratory chain of P. denitrificans.  相似文献   

11.
The amino acid sequence of Paracoccus (formerly Micrococcus) denitrificans cytochrome c550 has been established by a combination of standard chemical techniques and interpretation of a 2.5 A resolution x-ray electron density map. Peptides derived from a trypsin digest were chemically sequenced, and then ordered by fitting them to the density map. The amino acid compositions of chymotryptic peptides confirmed the x-ray map ordering the tryptic peptides. The amino acid sequence of this respiratory, prokaryotic cytochrome with 134 residues is discussed in relation to those of eukaryotic respiratory cytochrome c (103 to 113 amino acids), and prokaryotic, photosynthetic c2 (103 to 124 amino acids). At the primary structure level, c and c550 differ no more from cytochromes c2 than the various cytochromes c2 do from one another. It is suggested that the respiratory electron transport chain in prokaryotes and eukaryotes is a relatively late evolutionary offshoot of the photosynthetic electron transport chain in purple non-sulfur bacteria.  相似文献   

12.
Polyclonal antibodies have been obtained against a synthetic dodecapeptide identical to the aminoacid sequence 120-131 DSPIKDGVWPPE (inferred from its DNA sequence) of Paracoccus denitrificans cytochrome c oxidase subunit III. The antibodies had a titer higher than 1:10000 when tested against the antigen. These antibodies have been used to produce immunological evidence that, despite the fact that subunit III is not isolated with cytochrome c oxidase, it exists in Paracoccus denitrificans lysates. The antibodies did not show reactivity with bovine heart cytochrome c oxidase either by ELISA or immunoblotting. It was also shown that the antibodies react with a single polypeptide present in Paracoccus denitrificans cell lysates, having an apparent molecular weight close to that of subunit III of bovine heart oxidase.  相似文献   

13.
Reaction of oxygen with cytochrome c oxidase from Paracoccus denitrificans   总被引:6,自引:0,他引:6  
The reaction of reduced cytochrome c oxidase (EC 1.9.3.1) from Paracoccus denitrificans (American Type Culture Collection 13543) with dioxygen has been followed by laser flash photolysis of the CO derivative. In detergent-stabilized solutions the reaction showed at least two distinct kinetic components, the faster of which was oxygen concentration dependent and had a rate of approximately 60 X 10(6) M-1 s-1. The slower reaction was independent of oxygen concentration and had a rate of 9 X 10(2) s-1. These rates are about 1.5 times greater than comparable rates for ox heart oxidase reported by C. Greenwood and Q. H. Gibson (J. Biol. Chem. (1967) 242, 1782-1787). The kinetic components have markedly different optical spectra which agree precisely in form with those for ox heart enzyme (Greenwood, C., and Gibson, Q. H. (1967) J. Biol. Chem. 242, 1782-1787) but are shifted by 2 nm toward the red. In phospholipid vesicles, the spectral contribution of the faster component was augmented. The dissociation constant for CO at 20 degrees C is 1.6 microM, 6 times greater than for the ox heart enzyme. The bacterial enzyme binds one CO per 2 heme a. The enzyme has an absorption band at 830 nm in the oxidized form similar to that of the ox heart enzyme.  相似文献   

14.
The transient electron transfer (ET) interactions between cytochrome c1 of the bc1-complex from Paracoccus denitrificans and its physiological redox partners cytochrome c552 and cytochrome c550 have been characterized functionally by stopped-flow spectroscopy. Two different soluble fragments of cytochrome c1 were generated and used together with a soluble cytochrome c552 module as a model system for interprotein ET reactions. Both c1 fragments lack the membrane anchor; the c1 core fragment (c1CF) consists of only the hydrophilic heme-carrying domain, whereas the c1 acidic fragment (c1AF) additionally contains the acidic domain unique to P. denitrificans. In order to determine the ionic strength dependencies of the ET rate constants, an optimized stopped-flow protocol was developed to overcome problems of spectral overlap, heme autoxidation and the prevalent non-pseudo first order conditions. Cytochrome c1 reveals fast bimolecular rate constants (10(7) to 10(8) M(-1) s(-1)) for the ET reaction with its physiological substrates c552 and c550, thus approaching the limit of a diffusion-controlled process, with 2 to 3 effective charges of opposite sign contributing to these interactions. No direct involvement of the N-terminal acidic c1-domain in electrostatically attracting its substrates could be detected. However, a slight preference for cytochrome c550 over c552 reacting with cyochrome c1 was found and attributed to the different functions of both cytochromes in the respiratory chain of P. denitrificans.  相似文献   

15.
The mechanism of electron coupled proton transfer in cytochrome c oxidase (CcO) is still poorly understood. The P(M)-intermediate of the catalytic cycle is an oxoferryl state whose generation requires one additional electron, which cannot be provided by the two metal centres. The missing electron has been suggested to be donated to this binuclear site by a tyrosine residue. A tyrosine radical species has been detected in the P(M) and F* intermediates (formed by addition of H2O2) of the Paraccocus denitrificans CcO using electron paramagnetic resonance (EPR) spectroscopy. From the study of conserved variants its origin was determined to be Y167 which is surprising as this residue is not part of the active site. Upon inspection of the active site it becomes evident that W272 could be the actual donor of the missing electron, which can then be replenished from Y167 or from the Y280-H276 cross link in the natural cycle. To address the question, whether such a direct electron transfer pathway to the binuclear centre exists two tryptophan 272 variants in subunit I have been generated. These variants are characterised by their turnover rates as well as using EPR and optical spectroscopy. From these experiments it is concluded, that W272 is an important intermediate in the formation of the radical species appearing in P(M) and F* intermediates produced with hydrogen peroxide. The significance of this finding for the catalytic function of the enzyme is discussed.  相似文献   

16.
Gupta S  Warne A  Saraste M  Mazumdar S 《Biochemistry》2001,40(20):6180-6189
The pH-induced conformational transition in the CuA domain of subunit II of cytochrome oxidase of Paracoccus denitrificans (PdII) has been investigated using various spectroscopic and stopped-flow kinetic methods. UV-visible absorption and circular dichroism studies showed that an increase in pH from 6 to 10 leads to a conformation change with pK(a) = 8.2 associated with the CuA site of the protein. The secondary structure of the protein was, however, shown to remain unchanged in these two conformational states. Thermal and urea-induced unfolding studies showed that the "low-pH" conformation is more stable compared to the "high-pH" conformation of the protein. Moreover, the overall stability of the protein was found to decrease on reduction of the metal centers in the low-pH form, while the oxidation state of the metal centers did not have any significant effect on the overall stability of the protein in the high-pH form. Stopped-flow pH-jump kinetic studies suggested that the conformational transition is associated with a slow deprotonation step followed by fast conformational equilibrium. The results are discussed in the light of understanding the pH-induced conformational change in the beta-barrel structure of the protein and its effect on the coordination geometry of the metal site.  相似文献   

17.
Synthetic oligonucleotide probes were used to clone two loci from the chromosomal DNA of Paracoccus denitrificans that contain the genes for cytochrome c oxidase (cytochrome aa3). One locus seems to contain four or five genes probably forming an operon. Two of these code for the oxidase subunits II and III. Three open reading frames are found between the COII and COIII genes. The other locus codes for the subunit I. A short open reading frame is found upstream of this gene. All three subunits of the Paracoccus enzyme show remarkable homology to the corresponding subunits of the mitochondrial cytochrome oxidase. Possible protein products of the open reading frames have not yet been identified.  相似文献   

18.
The monohemic cytochrome c552from Pseudomonas nautica (c552-Pn) is thought to be the electron donor to cytochrome cd1, the so-called nitrite reductase (NiR). It shows as high levels of activity and affinity for the P. nautica NiR (NiR-Pn), as the Pseudomonas aeruginosa enzyme (NiR-Pa). Since cytochrome c552is by far the most abundant electron carrier in the periplasm, it is probably involved in numerous other reactions. Its sequence is related to that of the c type cytochromes, but resembles that of the dihemic c4cytochromes even more closely.The three-dimensional structure of P. nautica cytochrome c552has been solved to 2.2 A resolution using the multiple wavelength anomalous dispersion (MAD) technique, taking advantage of the presence of the eight Fe heme ions in the asymmetric unit. Density modification procedures involving 4-fold non-crystallographic averaging yielded a model with an R -factor value of 17.8 % (Rfree=20.8 %). Cytochrome c552forms a tight dimer in the crystal, and the dimer interface area amounts to 19% of the total cytochrome surface area. Four tighly packed dimers form the eight molecules of the asymmetric unit.The c552dimer is superimposable on each domain of the monomeric cytochrome c4from Pseudomomas stutzeri (c4-Ps), a dihemic cytochrome, and on the dihemic c domain of flavocytochrome c of Chromatium vinosum (Fcd-Cv). The interacting residues which form the dimer are both similar in character and position, which is also true for the propionates. The dimer observed in the crystal also exists in solution. It has been hypothesised that the dihemic c4-Ps may have evolved via monohemic cytochrome c gene duplication followed by evolutionary divergence and the adjunction of a connecting linker. In this process, our dimeric c552structure might be said to constitute a "living fossile" occurring in the course of evolution between the formation of the dimer and the gene duplication and fusion. The availability of the structure of the cytochrome c552-Pn and that of NiR from P. aeruginosa made it possible to identify putative surface patches at which the docking of c552to NiR-Pn may occur.  相似文献   

19.
Drosou V  Reincke B  Schneider M  Ludwig B 《Biochemistry》2002,41(34):10629-10634
Under in vitro conditions, bacterial cytochrome c oxidases may accept several nonhomologous c-type electron donors, including the evolutionarily related mitochondrial cytochrome c. Several lines of evidence suggest that in intact membranes the heme aa(3) oxidase from Paracoccus denitrificans receives its electrons from the membrane-bound cytochrome c(552). Both the structures of the oxidase and of a heterologously expressed, soluble fragment of the c(552) have been determined recently, but no direct structural information about a static cocomplex is available. Here, we analyze the kinetic properties of the isolated oxidase with the full-size c(552), with two truncated soluble forms, and with a set of site-specific mutants within the presumed docking site of the cytochrome, all heterologously expressed in Escherichia coli. Our data indicate that all three forms, the wild type and both truncations, are fully competent kinetically and exhibit biphasic kinetic behavior, however, under widely different ionic strength conditions. When mutations in lysine residues clustered around the interaction domain were introduced into the smallest fragment of c(552), both kinetic parameters, K(M) and k(cat), were drastically influenced. On the other hand, when the nonmutated truncated form was used to donate electrons to a set of oxidase mutants with replacements clustered along the docking site on subunit II, we observe distinct differences when comparing the kinetic properties of the widely used horse heart cytochrome c with those of the bacterial c(552). We conclude that the specific docking sites for the two types of cytochromes differ to some extent.  相似文献   

20.
We have devised a relatively simple method for the purification of cytochrome aa3 of Paracoccus denitrificans with three major subunits similar to those of the larger subunits of the mitochondrial cytochrome oxidase. This preparation has no c-type cytochrome. Studies were made of the oxidation of soluble cytochromes c from bovine heart and Paracoccus. The cytochrome-c oxidase activity was stimulated by low concentrations of either cytochrome c, providing an explanation for the multiphasic nature of plots of v/S versus v. Kinetics of the oxidation of bovine cytochrome c by the Paracoccus oxidase resembled those of bovine oxidase with bovine cytochrome c in every way; the Paracoccus oxidase with bovine cytochrome c can serve as an appropriate model for the mitochondrial system. The kinetics of the oxidation of the soluble Paracoccus cytochrome c by the Paracoccus oxidase were different from those seen with bovine cytochrome c, but resembled the latter if poly(L-lysine) was added to the assays. The important difference between the two species of cytochrome c is the more highly negative hemisphere on the side of the molecule way from the heme crevice in the Paracoccus cytochrome. Thus, the data emphasize the importance of all of the charged groups on cytochrome c in influencing the binding or electron transfer reactions of this oxidation-reduction system. The data also permit some interesting connotations about the possible evolution from the bacterial to the mitochondrial electron transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号