首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Zhu  L S Pierson  rd    M C Hawes 《Plant physiology》1997,115(4):1691-1698
Reporter strains of soil-borne bacteria were used to test the hypothesis that chemicals released by root border cells can influence the expression of bacterial genes required for the establishment of plant-microbe associations. Promoters from genes known to be activated by plant factors included virE, required for Agrobacterium tumefaciens pathogenesis, and common nod genes from Rhizobium leguminosarum bv viciae and Rhizobium meliloti, required for nodulation of pea (Pisum sativum) and alfalfa (Medicago sativum), respectively. Also included was phzB, an autoinducible gene encoding the biosynthesis of antibiotics by Pseudomonas aureofaciens. The virE and nod genes were activated to different degrees, depending on the source of border cells, whereas phzB activity remained unaffected. The homologous interaction between R. leguminosarum bv viciae and its host, pea, was examined in detail. Nod gene induction by border cells was dosage dependent and responsive to environmental signals. The highest levels of gene induction by pea (but not alfalfa) border cells occurred at low temperatures, when little or no bacterial growth was detected. Detached border cells cultured in distilled water exhibited increased nod gene induction (ini) in response to signals from R. leguminosarum bv viciae.  相似文献   

2.
Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. leguminosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutant, or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.  相似文献   

3.
Using various mutant strains of Rhizobium leguminosarum bv. viciae, we have investigated the role of nodO in stimulating infection thread development in vetch and pea. Analysis of R. leguminosarum bv. viciae nodE and nodO mutants revealed no significant difference from the wild-type infection phenotype. Conversely, an R. leguminosarum bv. viciae nodE nodO double mutant was severely impaired in its ability to form normal infection threads. This strain displayed a number of novel infection-related events, including intracellular accumulations of bacteria at the base of root hairs, distended and enlarged infection threads, and reversed threads growing up root hairs. Since normal infection was seen in a nodE mutant, nodO must suppress these abnormal infection phenomena A deletion mutant, retaining only the nodD and nodABCIJ genes, also formed intracellular accumulations at the base of root hairs. Addition of R. leguminosarum bv. viciae nodO could alleviate this phenotype and restore some infection thread formation, although these threads appeared to be abnormal. Exogenous application of R. leguminosarum bv. viciae Nod factors could not alleviate the aberrant infection phenotype. Our results show that the most basic Nod factor structure can allow bacterial entry into the root hair, and that nodO can promote subsequent infection thread development.  相似文献   

4.
Rhizobium leguminosarum biovar viciae strain 3841 is a motile alpha-proteobacterium that can establish a nitrogen-fixing symbiosis within the roots of pea plants. In order to determine the contribution of chemotaxis to the lifestyle of R. leguminosarum, we have characterized the function of two chemotaxis gene clusters (che1 and che2) in controlling motility behaviour. We have found that both chemotaxis gene clusters modulate the motility swimming bias of R. leguminosarum cells and that the che1 cluster is the major pathway controlling swimming bias and chemotaxis. The che2 cluster also contributes to swimming bias, but has a minor effect on chemotaxis. Using competitive nodulation assays, we have demonstrated that a functional che1 cluster, but not the che2 cluster, promotes competitive nodulation of the peas. This finding implies that the environmental cue(s) triggering chemotaxis of R. leguminosarum bv. viciae cells towards the roots of pea and facilitating colonization are likely to be processed through the che1 cluster despite the contribution of both che clusters to swimming behaviour. A phylogenetic analysis of the distribution of che1 and che2 orthologues in the alpha-proteobacteria together with our results allow us to propose that che1 homologues are major controllers of chemotaxis and host association in the Rhizobiaceae.  相似文献   

5.
The manganese/iron-type superoxide dismutase (SodA) of Rhizobium leguminosarum bv. viciae 3841 is exported to the periplasm of R. l. bv. viciae and Escherichia coli. However, it does not possess a hydrophobic cleaved N-terminal signal peptide typically present in soluble proteins exported by the Sec-dependent (Sec) pathway or the twin-arginine translocation (TAT) pathway. A tatC mutant of R. l. bv. viciae exported SodA to the periplasm, ruling out export of SodA as a complex with a TAT substrate as a chaperone. The export of SodA was unaffected in a secB mutant of E. coli, but its export from R. l. bv. viciae was inhibited by azide, an inhibitor of SecA ATPase activity. A temperature-sensitive secA mutant of E. coli was strongly reduced for SodA export. The 10 N-terminal amino acid residues of SodA were sufficient to target the reporter protein alkaline phosphatase to the periplasm. Our results demonstrate the export of a protein lacking a classical signal peptide to the periplasm by a SecA-dependent, but SecB-independent targeting mechanism. Export of the R. l. bv. viciae SodA to the periplasm was not limited to the genus Rhizobium, but was also observed in other proteobacteria.  相似文献   

6.
IVET was used to identify genes that are specifically expressed in the rhizosphere of the pea-nodulating bacterium Rhizobium leguminosarum A34. A library of R. leguminosarum A34 cloned in the integration vector pIE1, with inserts upstream of a promoter-less purN:gfp:gusA, was conjugated into purN host RU2249 and recombined into the genome. After removal of colonies that expressed the reporter genes of the vector under laboratory conditions, the library was inoculated into a nonsterile pea rhizosphere. The key result is that 29 rhizosphere-induced loci were identified. Sequence analysis of these clones showed that a wide variety of R. leguminosarum A34 genes are expressed specifically in the rhizosphere including those encoding proteins involved in environmental sensing, control of gene expression, metabolic reactions and membrane transport. These genes are likely to be important for survival and colonization of the pea rhizosphere.  相似文献   

7.
A monoclonal antibody, AFRC MAC 203, was used to examine the expression of a nodule-induced cell surface antigen associated with lipopolysaccharide in Rhizobium leguminosarum bv. viciae 3841. Silver-enhanced immunogold-labeled tissue sections revealed that, in very young tissues of pea root nodules, the nodule-induced form of lipopolysaccharide antigen was not expressed either by rhizobia in the infection thread or by bacteria recently released into the plant cell cytoplasm. In the more mature regions of the nodule, the antigen was expressed by membrane-enclosed bacteroids, including immature forms that had not yet expressed the enzyme nitrogenase and were not yet Y shaped. Immunogold labeling of thin sections revealed that the MAC 203 antigen, but not the nitrogenase, was also expressed by bacteria in infection threads situated in and between bacteroid-containing plant cells in mature nodule tissue.  相似文献   

8.
Abstract Using a Rhizobium leguminosarum bv. viciae strain harboring nodD :: lacZ or nodC :: lacZ translational fusions, grown in minimal media containing different concentrations of nitrate and/or ammonium salts, lacZ expression was monitored. Based on these experiments it is shown that the induction of Rhizobium leguminosarum bv. viciae nodD and nodABC operons by the flavanone naringenin is not regulated in response to nitrate and/or ammonium salts.  相似文献   

9.
Transgenic alfalfa (Medicago sativa L. cv Regen) roots carrying genes encoding soybean lectin or pea (Pisum sativum) seed lectin (PSL) were inoculated with Bradyrhizobium japonicum or Rhizobium leguminosarum bv viciae, respectively, and their responses were compared with those of comparably inoculated control plants. We found that nodule-like structures formed on alfalfa roots only when the rhizobial strains produced Nod factor from the alfalfa-nodulating strain, Sinorhizobium meliloti. Uninfected nodule-like structures developed on the soybean lectin-transgenic plant roots at very low inoculum concentrations, but bona fide infection threads were not detected even when B. japonicum produced the appropriate S. meliloti Nod factor. In contrast, the PSL-transgenic plants were not only well nodulated but also exhibited infection thread formation in response to R. leguminosarum bv viciae, but only when the bacteria expressed the complete set of S. meliloti nod genes. A few nodules from the PSL-transgenic plant roots were even found to be colonized by R. leguminosarum bv viciae expressing S. meliloti nod genes, but the plants were yellow and senescent, indicating that nitrogen fixation did not take place. Exopolysaccharide appears to be absolutely required for both nodule development and infection thread formation because neither occurred in PSL-transgenic plant roots following inoculation with an Exo(-) R. leguminosarum bv viciae strain that produced S. meliloti Nod factor.  相似文献   

10.
Genes of Rhizobium leguminosarum bv. viciae VF39 coding for the regulatory elements NifA, FixL and FixK were isolated, sequenced and genetically analysed. The fixK–fixL region is located upstream of the fixNOQP operon on the non-nodulation plasmid pRleVF39c. The deduced amino acid sequence of FixL revealed an unusual structure in that it contains a receiver module (homologous to the N-terminal domain of response regulators) fused to its transmitter domain. An oxygen-sensing haem-binding domain, found in other FixL proteins, is conserved in R. leguminosarum bv. viciae FixL. R. leguminosarum bv. viciae possesses a second fnr -like gene, designated fixK , whose encoded gene product is very similar to Rhizobium meliloti and Azorhizobium caulinodans FixK. Individual R. leguminosarum bv. viciae fixK and fixL insertion mutants displayed a Fix+ phenotype. A reduced nitrogen-fixation activity was found for a R. leguminosarum bv. viciae fnrN -deletion mutant, whereas no nitrogen-fixation activity was detectable for a fixK / fnrN double mutant. The R. leguminosarum bv. viciae nifA gene is expressed independently of FixL and FixK under aerobic and microaerobic conditions, whereas fixL gene expression is induced under microaerobiosis. Another orf was identified downstream of fixK–fixL and encodes a product which has homology to pseudoazurins from different species. Mutation of this azu gene showed that it is dispensable for nitrogen fixation.  相似文献   

11.
12.
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.  相似文献   

13.
Rhizobium leguminosarum bv. viciae, which nodulates pea and vetch, makes a mixture of secreted nodulation signals (Nod factors) carrying either a C18:4 or a C18:1 N-linked acyl chain. Mutation of nodE blocks the formation of the C18:4 acyl chain, and nodE mutants, which produce only C18:1-containing Nod factors, are less efficient at nodulating pea. However, there is significant natural variation in the levels of nodulation of different pea cultivars by a nodE mutant of R. leguminosarum bv. viciae. Using recombinant inbred lines from two pea cultivars, one which nodulated relatively well and one very poorly by the nodE mutant, we mapped the nodE-dependent nodulation phenotype to a locus on pea linkage group I. This was close to Sym37 and PsK1, predicted to encode LysM-domain Nod-factor receptor-like proteins; the Sym2 locus that confers Nod-factor-specific nodulation is also in this region. We confirmed the map location using an introgression line carrying this region. Our data indicate that the nodE-dependent nodulation is not determined by the Sym2 locus. We identified several pea lines that are nodulated very poorly by the R. leguminosarum bv. viciae nodE mutant, sequenced the DNA of the predicted LysM-receptor domains of Sym37 and PsK1, and compared the sequences with those derived from pea cultivars that were relatively well nodulated by the nodE mutant. This revealed that one haplotype (encoding six conserved polymorphisms) of Sym37 is associated with very poor nodulation by the nodE mutant. There was no such correlation with polymorphisms at the PsK1 locus. We conclude that the natural variation in nodE-dependent nodulation in pea is most probably determined by the Sym37 haplotype.  相似文献   

14.
Rhizobium leguminosarum bv. viciae can attach to the roots of legume and non-legume plants. We wanted to determine whether root exudates could affect in vitro surface attachment in a confocal microscopy assay. Root exudate from pea, other legumes, wheat, and Arabidopsis induced R. leguminosarum bv. viciae to attach end-on (in a polar manner) to glass in hexagonal close-packed arrays, rather than attaching along their long axis. This did not involve a reorientation but was probably due to altered growth. The polar attachment involves a novel bacterial component because it occurred in mutants lacking a symbiosis plasmid (and hence nodulation genes) and polar glucomannan. The major surface (acidic) exopolysaccharide was required, and mutations affecting exported proteins and flagella delayed but did not block polar attachment. The polar attachment activity was purified as a high molecular weight fraction from pea root exudate and is an arabinogalactan protein (AGP) based on its carbohydrate content, reactivity with AGP-specific monoclonal antibodies and Yariv reagent, and sensitivity to enzymes that degrade proteins and carbohydrates. We propose that this novel mode of AGP-induced attachment may be important for growth of these bacteria on the roots of both legumes and non-legumes.  相似文献   

15.
Lipo-chitin oligosaccharides (LCOs) are usually produced and isolated for structural analysis from bacteria cultured under laboratory rather than field conditions. We have studied the influence of bacterial growth temperature on the LCO structures produced by different Rhizobium leguminosarum strains, using thin-layer chromatographic, high-performance liquid chromatographic, and mass spectrometric analyses. Wild-type R. leguminosarum bv. viciae A1 was shown to produce larger relative amounts of nodX-mediated, acetylated LCOs at 12 degrees C than at 28 degrees C, indicating that the activity of nodX (a gene encoding an LCO O-acetyl transferase) is temperature dependent. Interestingly, symbiotic resistance genes sym1 and sym2 found in primitive pea cultivars are also temperature sensitive, only being active at low temperatures, at which they block nodulation by R. leguminosarum bv. viciae strains lacking nodX. We therefore propose that the gene-for-gene relationship between plant and bacterium has a temperature-sensitive mechanism as an adaptation to environmental conditions. An R. leguminosarum bv. trifolii strain was also shown to produce larger relative amounts of nodX-mediated, acetylated LCOs at 12 degrees C than at 28 degrees C. The major components synthesized by the two strains are produced at both temperatures but in different relative amounts, while some minor components are only produced at one of the two temperatures.  相似文献   

16.
17.
Abstract An integration vector was developed which inserts cloned DNA in a non-essential site of the Rhizobium leguminosarum biovar viciae chromosome. The expression of integrated genes is under the control of the constitutive neomycin phosphotransferase II ( npt II) promotor of transposon Tn5. The design of the vector ensures that loss of vector sequences can be detected, enabling selection of progeny containing only the requisite DNA. The newly constructed vector was employed to insert the Escherichia coli gusA gene conferring GUS activity into R. leguminosarum bv. viciae strain LRS39401 which is cured of its symbiotic plasmid (pSym). One GUS-positive transconjugant, strain CT0370, was shown to have lost all vector sequences. Conjugal transfer of pSym2004 (a Tn5-tagged derivative of symbiotic plasmid pRL1JI, which specifies pea nodulation and symbiotic nitrogen fixation) to CT0370, restored the GUS-positive strain's symbiotic proficiency. Strain CT0370 is presently being used in a field release experiment in order to assess the extent of pSym transfer in a natural R. leguminosarum bv. viciae population under environmental conditions.  相似文献   

18.
In pea (Pisum sativum) up to 50 nodulation mutants are known, several of which are affected in the early steps of the symbiotic interaction with Rhizobium sp. bacteria. Here we describe the role of the sym2 gene in nodulation (Nod) factor perception. Our experiments show that the sym2A allele from the wild pea variety Afghanistan confers an arrest in infection-thread growth if the Rhizobium leguminosarum bv viciae strain does not produce Nod factors with a NodX-mediated acetylation at their reducing end. Since the induction of the early nodulin gene ENOD12 in the epidermis and the formation of a nodule primordium in the inner cortex were not affected, we conclude that more than one Nod factor-perception mechanism is active. Furthermore, we show that sym2A-mediated control of infection-thread growth was affected by the bacterial nodulation gene nodO.  相似文献   

19.
20.
The patterns of O-acetylation of the exopolysaccharide (EPS) from the Sym plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii strain LPR5, R. leguminosarum bv. trifolii strain ANU843 and R. leguminosarum bv. viciae strain 248 were determined by 1H and 13C NMR spectroscopy. Beside a site indicative of the chromosomal background, these strains have one site of O-acetylation in common, namely residue b of the repeating unit. The O-acetyl esterification pattern of EPS of the Sym plasmid-cured derivatives of strains LPR5, ANU843, and 248 was not altered by the introduction of a R. leguminosarum bv. viciae Sym plasmid or a R. leguminosarum bv. trifolii Sym plasmid. The induction of nod gene expression by growth of the bacteria in the presence of Vicia sativa plants or by the presence of the flavonoid naringenin, produced no significant changes in either amount or sites of O-acetyl substitution. Furthermore, no such changes were found in the EPS from a Rhizobium strain in which the nod genes are constitutively expressed. The substitution pattern of the exopolysaccharide from R. leguminosarum is, therefore, determined by the bacterial genome and is not influenced by genes present on the Sym plasmid. This conclusion is inconsistent with the suggestion of Philip-Hollingsworth et al. (Philip-Hollingsworth, S., Hollingsworth, R. I., Dazzo, F. B., Djordjevic, M. A., and Rolfe, B. G. (1989) J. Biol. Chem. 264, 5710-5714) that nod genes of R. leguminosarum bv. trifolii, by influencing the acetylation pattern of EPS, determine the host specificity of nodulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号