首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was undertaken to demonstrate the role of the RhoA/Rho kinase pathway in endothelin-1 (ET-1)-induced contraction of the rabbit basilar artery. Isometric tension and Western blot were used to examine ET-1-induced contraction and RhoA activation. The upstream effect on ET-1-induced RhoA activity was determined by using ET(A) and ET(B) receptor antagonists, protein kinase C (PKC), tyrosine kinase, and phosphatidylinositol-3 kinase inhibitors. The downstream effect of ET-1-induced contraction and RhoA activity was studied in the presence of the Rho kinase inhibitor Y-27632. The effect of Rho kinase inhibitor on ET-1-induced myosin light chain (MLC) phosphorylation was investigated by using urea-glycerol-PAGE immunoblotting. We found 1) ET-1 increased RhoA activity (membrane binding RhoA) in a concentration-dependent manner; 2) ET(A), but not ET(B), receptor antagonist abolished the effect of ET-1 on RhoA activation; 3) phosphodylinositol-3 kinase inhibitor, but not PKC and tyrosine kinase inhibitors, reduced ET-1-induced RhoA activation; 4) Rho kinase inhibitor Y-27632 (10 microM) inhibited ET-1-induced contraction; and 5) ET-1 increased the level of MLC phosphorylation. Rho kinase inhibitor Y-27632 reduced the effect of ET-1 on MLC phosphorylation. This study demonstrated that RhoA/Rho kinase activation is involved in ET-1-induced contraction in the rabbit basilar artery. Phosphodylinositol-3 kinase and MLC might be the upstream and downstream factors of RhoA activation.  相似文献   

2.
We recently demonstrated that endothelin-1 (ET-1) activates two types of Ca(2+)-permeable nonselective cation channel (designated NSCC-1 and NSCC-2) in Chinese hamster ovarian cells expressing endothelin(B) receptor (CHO-ET(B)R). These channels can be discriminated using the Ca(2+) channel blockers, LOE 908 and SK&F 96365. LOE 908 is a blocker of NSCC-1 and NSCC-2, whereas SK&F 96365 is a blocker of NSCC-2. In this study, we investigated the possible role of phosphoinositide 3-kinase (PI3K) in the ET-1-induced activation of NSCCs in CHO-ET(B)R using wortmannin and LY-294002, inhibitors of PI3K. ET-1-induced Ca(2+) influx was partially inhibited in CHO-ET(B)R pretreated with wortmannin or LY-294002. In contrast, addition of wortmannin or LY-294002 after stimulation with ET-1 did not suppress Ca(2+) influx. The Ca(2+) channels activated by ET-1 in wortmannin- or LY-294002-treated CHO-ET(B)R were sensitive to LOE 908 and resistant to SK&F 96365. In conclusion, NSCC-2 is stimulated by ET-1 via PI3K-dependent cascade, whereas NSCC-1 is stimulated independently of the PI3K pathway. Moreover, PI3K seems to be required for the initiation of the Ca(2+) entry through NSCC-2 but not for its maintenance.  相似文献   

3.
Cannabinoid CB1-receptor stimulation in DDT1 MF-2 smooth muscle cells induces a rise in [Ca2+]i, which is dependent on extracellular Ca2+ and modulated by thapsigargin-sensitive stores, suggesting capacitative Ca2+ entry (CCE), and by MAP kinase. Non-capacitative Ca2+ entry (NCCE) stimulated by arachidonic acid (AA) partly mediates histamine H1-receptor-evoked increases in [Ca2+]i in DDT1 MF-2 cells. In the current study, both Ca2+ entry mechanisms and a possible link between MAP kinase activation and increasing [Ca2+]i were investigated. In the whole-cell patch clamp configuration, the CB-receptor agonist CP 55, 940 evoked a transient, Ca2+-dependent K+ current, which was not blocked by the inhibitors of CCE, 2-APB, and SKF 96365. AA, but not its metabolites, evoked a transient outward current and inhibited the response to CP 55,940 in a concentration-dependent manner. CP 55,940 induced a concentration-dependent release of AA, which was inhibited by the CB1 antagonist SR 141716. The non-selective Ca2+ channel blockers La3+ and Gd3+ inhibited the CP 55,940-induced current at concentrations that had no effect on thapsigargin-evoked CCE. La3+ also inhibited the AA-induced current. CP 55,940-induced AA release was abolished by Gd3+ and by phospholipase A2 inhibition using quinacrine; this compound also inhibited the outward current. The CP 55,940-induced AA release was strongly reduced by the MAP kinase inhibitor PD 98059. The data suggest that in DDT1 MF-2 cells, AA is an integral component of the CB1 receptor signaling pathway, upstream of NCCE and, via PLA2, downstream of MAP kinase.  相似文献   

4.
Xiao GN  Guan YY  He H 《Life sciences》2002,70(19):2233-2241
The effects of Cl- channel blockers on endothelin-1 (ET-1)-induced proliferation of rat aortic vascular smooth muscle cells (VSMC) were examined. We found ET-1 concentration-dependently increased cell count and [3H]-thymidine incorporation into VSMC, with EC50 values of 24.8 and 11.4 nM, respectively. Both nifedipine and SK&F96365 inhibited 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC with the maximal inhibitory concentrations of 1 and 10 microM, respectively. DIDS inhibited 10 nM ET-1-induced increase in cell count and [3H]-thymidine incorporation into VSMC in a concentration-dependent manner, whereas other Cl- channel blockers including IAA-94, NPPB, DPC, SITS and furosemide did not produce these effects. 3 microM DIDS reduced 10 nM ET-1-induced sustained increase in cytoplasmic Ca2+ concentration ([Ca2+]) by 52%. Pretreatment of VSMC with 1 microM nifedipine completely inhibited the DIDS effect on 10 nM ET-1-induced [3H]-thymidine incorporation into VSMC and sustained increase in [Ca2+]i, whereas pretreatment with 10 microM SK&F96365 did not completely block these effects of DIDS. DIDS did not affect ET-1-induced Ca2+ release and 30 mM KCl-induced increase in [Ca2+]i. Our data suggest that DIDS-sensitive Cl- channels mediate VSMC proliferation induced by ET-1 by mechanisms related to membrane depolarization and Ca2+ influx through voltage-dependent Ca2+ channels.  相似文献   

5.
Protein kinase C of rabbit iris smooth muscle was purified by the sequential use of three chromatographic steps, i.e. anion-exchange (DEAE-cellulose), gel filtration (Sephadex G-150) and substrate affinity (protamine-agarose), and its properties were investigated by using as substrate myosin light-chain protein (MLC) isolated from the same tissue. The enzyme appeared as a single band on SDS/polyacrylamide-gel electrophoresis, with a molecular mass of approx. 80 kDa. Histone H-1 and iris muscle MLC, but not rabbit skeletal-muscle MLC, were effective substrates for the enzyme, with apparent Km values of 3.0 and 16.6 microM respectively. The enzyme, with MLC as substrate, had the following characteristics. (a) Its activity was dependent on Ca2+ and phosphatidylserine (PS). In the presence of Ca2+ and PS, diolein and phorbol dibutyrate (PDBu) increased its activity by 61 and 65% respectively. Half-maximal activation of the enzyme (Ka) occurred at 10 microM free Ca2+, and in the presence of diolein and PDBu the apparent Ka for Ca2+ was decreased to 3 microM and 2 microM respectively. (b) Studies on the relative potency of various cofactors in activating the enzyme revealed that PS, phorbol myristate acetate and 1-stearoyl-2-arachidonylglycerol were the most potent of the phospholipids, phorbol esters and diacylglycerols respectively. (c) H-7, a protein kinase C inhibitor, inhibited MLC phosphorylation in a dose-dependent manner, with 50% inhibition at 10 microM. (d) Addition of carbamoylcholine (for 1 min) or PDBu (for 25 min) to iris sphincter muscle prelabelled with [32P]Pi specifically increased MLC phosphorylation, and only the stimulatory effect of the muscarinic agonist was blocked by atropine. The data provide additional support for a role for protein kinase C in the contractile response of the iris smooth muscle.  相似文献   

6.
In smooth muscle, the cytosolic Ca2+ concentration ([Ca2+](i)) is the primary determinant of contraction, and the intracellular pH (pH(i)) modulates contractility. Using fura-2 and 2',7'-biscarboxyethyl-5(6) carboxyfluorescein (BCECF) fluorometry and rat aortic smooth muscle cells in primary culture, we investigated the effect of the increase in pH(i) on [Ca2+](i). The application of the NH(4)Cl induced concentration-dependent increases in both pH(i) and [Ca2+](i). The extent of [Ca2+](i) elevation induced by 20mM NH(4)Cl was approximately 50% of that obtained with 100mM K(+)-depolarization. The NH(4)Cl-induced elevation of [Ca2+](i) was completely abolished by the removal of extracellular Ca2+ or the addition of extracellular Ni2+. The 100mM K(+)-induced [Ca2+](i) elevation was markedly inhibited by a voltage-operated Ca2+ channel blocker, diltiazem, and partly inhibited by a non-voltage-operated Ca2+ channel blocker, SKF96365. On the other hand, the NH(4)Cl-induced [Ca2+](i) elevation was resistant to diltiazem, but was markedly inhibited by SKF96365. It is thus concluded that intracellular alkalinization activates the Ca2+ influx via non-voltage-operated Ca2+ channels and thereby increases [Ca2+](i) in the vascular smooth muscle cells. The alkalinization-induced Ca2+ influx may therefore contribute to the enhancement of contraction.  相似文献   

7.
The temporal relationship between Ca2+-induced contraction and phosphorylation of 20 kDa myosin light chain (MLC) during a step increase in Ca2+ was investigated using permeabilized phasic smooth muscle from rabbit portal vein and guinea-pig ileum at 25°C. We describe here a Ca2+-induced Ca2+ desensitization phenomenon in which a transient rise in MLC phosphorylation is followed by a transient rise in contractile force. During and after the peak contraction, the force to phosphorylation ratio remained constant. Further treatment with cytochalasin D, an actin fragmenting agent, did not affect the transient increase in phosphorylation, but blocked force development. Together, these results indicate that the transient phosphorylation causes the transient contraction and that neither inhomogeneous contractility nor reduced thin filament integrity effects the transient phosphorylation. Lastly, we show that known inhibitors to MLC kinase kinases and to a Ca2+-dependent protein phosphatase did not eliminate the desensitized contractile force. This study suggests that the Ca2+-induced Ca2+ desensitization phenomenon in phasic smooth muscle does not result from any of the known intrinsic mechanisms involved with other aspects of smooth muscle contractility.  相似文献   

8.
Endothelin (ET)-1 activates twotypes of Ca2+-permeable nonselective cation channels(NSCC-1 and NSCC-2) and a store-operated Ca2+ channel(SOCC) in rabbit internal carotid artery (ICA) vascular smooth musclecells (VSMCs) in addition to the voltage-operated Ca2+channel (VOCC). These channels can be discriminated using the Ca2+ channel blockers SK&F-96365 and LOE-908. SK&F-96365 issensitive to NSCC-2 and SOCC, and LOE-908 is sensitive to NSCC-1 andNSCC-2. On the basis of sensitivity to nifedipine, a specific blocker of the L-type VOCC, VOCCs have a minor role in ET-1-inducedmitogenesis. Both LOE-908 and SK&F-96365 inhibited ET-1-inducedmitogenesis in a concentration-dependent manner, and the combination ofLOE-908 and SK&F-96365 abolished it. The IC50 values ofthese blockers for ET-1-induced mitogenesis correlated well with thoseof the ET-1-induced intracellular free Ca2+concentration responses. These results indicate that the inhibitory action of these blockers on ET-1-induced mitogenesis may bemediated by blockade of NSCC-1, NSCC-2, and SOCC. Collectively,extracellular Ca2+ influx through NSCC-1, NSCC-2, and SOCCmay be essential for ET-1-induced mitogenesis in ICA VSMCs.

  相似文献   

9.
We have studied the effect of the ciguatera-related toxin maitotoxin (MTX) on the cytosolic free calcium concentration ([Ca(2+)]i) of human peripheral blood lymphocytes loaded with the fluorescent probe Fura2 and the regulation of MTX action by different drugs known to interfere in cellular Ca(2+) signalling mechanisms and by the marine phycotoxin yessotoxin (YTX). MTX produced a concentration-dependent elevation of [Ca(2+)]i in a Ca(2+)-containing medium. This effect was stimulated by pretreatment with YTX 1 microM and NiCl(2) 15 microM. The voltage-independent Ca(2+) channel antagonist 1-[beta-[3-(4-methoxyphenyl)propoxyl]-4-methoxyphenyl]-1H-imidazole hydrochloride (SKF96365) blocked the MTX-induced [Ca(2+)]i elevation, while the L-type channel blocker nifedipine had no effect. Pretreatment with NiCl(2) or nifedipine did not modify YTX-induced potentiation of MTX effect, and SKF96365-induced inhibition was reduced in the presence of YTX, which suggest different pathways to act on [Ca(2+)]i. Preincubation with N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide.2HCl (H-89) or genistein (10 microM) also had no effect on the MTX-induced [Ca(2+)]i increment. In contrast, the PKC inhibitor bisindolilmaleimide I (GF109203X 1 microM) potentiated the MTX effect, whereas phosphatidylinositol (PI) 3-kinase inhibition with wortmannin (10 nM) reduced the MTX-elicited Ca(2+) entry. In summary, MTX produced Ca(2+) influx into human lymphocytes through a SKF96365-sensitive, nifedipine-insensitive pathway. The MTX-induced [Ca(2+)]i elevation was stimulated by the marine toxin YTX through a mechanism insensitive to SKF96365, nifedipine or NiCl(2). It was also stimulated by the divalent cation Ni(2+) and PKC inhibition and was partially inhibited by PI 3-kinase inhibition.  相似文献   

10.
ACh-induced contraction of esophageal circular muscle (ESO) depends on Ca2+ influx and activation of protein kinase Cepsilon (PKCepsilon). PKCepsilon, however, is known to be Ca2+ independent. To determine where Ca2+ is needed in this PKCepsilon-mediated contractile pathway, we examined successive steps in Ca2+-induced contraction of ESO muscle cells permeabilized by saponin. Ca2+ (0.2-1.0 microM) produced a concentration-dependent contraction that was antagonized by antibodies against PKCepsilon (but not by PKCbetaII or PKCgamma antibodies), by a calmodulin inhibitor, by MLCK inhibitors, or by GDPbetas. Addition of 1 microM Ca2+ to permeable cells caused myosin light chain (MLC) phosphorylation, which was inhibited by the PKC inhibitor chelerythrine, by D609 [phosphatidylcholine-specific phospholipase C inhibitor], and by propranolol (phosphatidic acid phosphohydrolase inhibitor). Ca2+-induced contraction and diacylglycerol (DAG) production were reduced by D609 and by propranolol, alone or in combination. In addition, contraction was reduced by AACOCF(3) (cytosolic phospholipase A(2) inhibitor). These data suggest that Ca2+ may directly activate phospholipases, producing DAG and arachidonic acid (AA), and PKCepsilon, which may indirectly cause phosphorylation of MLC. In addition, direct G protein activation by GTPgammaS augmented Ca2+-induced contraction and caused dose-dependent production of DAG, which was antagonized by D609 and propranolol. We conclude that agonist (ACh)-induced contraction may be mediated by activation of phospholipase through two distinct mechanisms (increased intracellular Ca2+ and G protein activation), producing DAG and AA, and activating PKCepsilon-dependent mechanisms to cause contraction.  相似文献   

11.
The purpose of this study was to demonstrate the involvement of Ca(2+) influx through voltage-independent Ca(2+) channels (VICCs) in endothelin-1 (ET-1)-induced transactivation of epidermal growth factor receptor protein tyrosine kinase (EGFR PTK) using the Ca(2+) channel blockers LOE-908 and SK&F-96365 in rabbit internal carotid artery vascular smooth muscle cells. ET-1-induced EGFR PTK transactivation was completely inhibited by AG-1478, which is a specific inhibitor of EGFR PTK. In the absence of extracellular Ca(2+), the magnitude of EGFR PTK transactivation was near the basal level. Based on sensitivity to nifedipine, which is a specific blocker of voltage-operated Ca(2+) channels (VOCCs), VOCCs have minor roles in EGFR PTK transactivation. In contrast, Ca(2+) influx through VICCs plays an important role in EGFR PTK transactivation. Moreover, based on the sensitivity of VICCs to SK&F-96365 and LOE-908, VICCs were shown to consist of two types of Ca(2+)-permeable nonselective cation channels (NSCCs), which are designated NSCC-1 and NSCC-2, and a store-operated Ca(2+) channel. In summary, Ca(2+) influx through VICCs plays an essential role in ET-1-induced EGFR PTK transactivation in rabbit internal carotid artery vascular smooth muscle cells.  相似文献   

12.
There is evidence from our own laboratory and that of others that EP-receptor ligands are strong contractile agonists in bovine iris sphincter and that FP-receptor agonists are strong contractile agonists in cat iris sphincter. Here, we have investigated the effects of prostaglandin (PG) receptor agonists of the FP-, EP-, TP- and DP-class on myosin light chain (MLC) phosphorylation, p42/p44 MAP kinase phosphorylation and contraction in the iris sphincter of bovine and cat. Using three signal transduction mechanism assays, namely MLC phosphorylation, MAP kinase phosphorylation and contraction, we demonstrated that in bovine iris sphincter the rank order of potency of the PG agonists in the contractile and MLC phosphorylation assays is as follows: E2>U46619>F2alpha>D2, and in cat F2alpha>D2>E2>U46619. In the MAP kinase assay, in bovine iris sphincter the rank order of potency is E2>F2alpha and in cat F2alpha>E2. These conclusions are supported by the following findings: (1) In the contractile assay, in the bovine sphincter the EC50s for PGF2alpha, PGE2, U46619 and PGD2 were found to be 1.4x10(-7), 5.0x10(-9), 9.0x10(-9) and 1.3x10(-6)M, respectively, and the corresponding values in the cat were 1.9x10(-8), 2.3x10(-7), 1.5x10(-6) and 6.9x10(-8)M, respectively. (2) In the MLC phophorylation assay, in the bovine sphincter PGF2alpha, PGE2, U46619 and PGD2 increased MLC phophorylation by 118%, 165%, 153% and 72%, respectively, and the corresponding values in cat were 175%, 99%, 90% and 95%, respectively. (3) In the MAP kinase assay, in the bovine iris sphincter PGF2alpha and PGE2, increased MAP kinase phosphorylation by 276% and 328%, respectively, and the corresponding values in cat were 308% and 245%, respectively. The data presented demonstrate pronounced species differences in the effects of the prostanoids on the MLC kinase signaling pathway in bovine and cat irides and furthermore confirm the existence of FP-receptors in that of the bovine.  相似文献   

13.
Regulation of smooth muscle contraction involves a number of signaling mechanisms that include both kinase and phosphatase reactions. The goal of the present study was to determine the role of one such kinase, phosphatidylinositol (PI)3-kinase, in vascular smooth muscle excitation-contraction coupling. Using intact medial strips of the swine carotid artery, we found that inhibition of PI3-kinase by LY-294002 resulted in a concentration-dependent decrease in the contractile response to both agonist stimulation and membrane depolarization-dependent contractions and a decrease in Ca(2+)-dependent myosin light chain (MLC) phosphorylation, the primary step in the initiation of smooth muscle contraction. Inhibition of PI3-kinase also depressed phorbol dibutyrate-induced contractions, which are not dependent on either Ca(2+) or MLC phosphorylation but are dependent on protein kinase C. To determine the Ca(2+)-dependent site of action of PI3-kinase, we determined the effect of several inhibitors of calcium metabolism on LY-294002-dependent inhibition of contraction. These inhibitors included nifedipine, SK&F-96365, and caffeine. Only SK&F-96365 blocked the LY-294002-dependent inhibition of contraction. Interestingly, all compounds blocked the LY-294002-dependent inhibition of MLC phosphorylation. Our results suggest that activation of PI3-kinase is involved in a Ca(2+)- and MLC phosphorylation-independent pathway for contraction likely to involve protein kinase C. In addition, our results also suggest that activation of PI3-kinase is involved in Ca(2+)-dependent signaling at the level of receptor-operated calcium channels.  相似文献   

14.
Tsai MH  Jiang MJ 《Life sciences》2005,76(8):877-888
Smooth muscle contractility is regulated by both intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ sensitivity of the contractile apparatus. Extracellular signal-regulated kinases1/2 (ERK1/2) have been implicated in modulating Ca2+ sensitivity of smooth muscle contraction but mechanisms of action remain elusive. This study investigated the roles of ERK1/2 in modulating [Ca2+]i, calcium sensitivity and the 20-kDa myosin light chain (MLC20) phosphorylation during contraction activated by alpha1-adrenoceptor agonist phenylephrine and thromboxane A2 mimetic U46619 in rat tail artery strips. A specific inhibitor for ERK1/2 activation, U0126, inhibited phenylephrine- and U46619-induced contraction, shifting both concentration-response curves rightward. During phenylephrine-stimulated contraction, U0126 exhibited concentration-dependent inhibition towards force but significant decreases in [Ca2+]i were detected only at higher concentration. Both phenylephrine and U46619 induced a transient activation of ERK1/2 which was abolished by U0126 but unaffected by a general tyrosine kinase inhibitor genistein or Rho kinase inhibitor Y27632 at concentrations inhibiting more than 50% force. Interestingly, U0126 had no effect on steady-state MLC20 phosphorylation levels stimulated by both receptor agonists. These results indicated that during contraction of rat tail artery smooth muscle activated by alpha1-adrenoceptor agonist or thromboxane A2 analogue, ERK1/2 increase Ca2+ sensitivity that does not involve the modulation of MLC20 phosphorylation.  相似文献   

15.
Smooth muscle contraction is initiated by myosin light chain (MLC) phosphorylation catalyzed by the Ca(2+) dependent MLC kinase. However, many aspects of smooth muscle contraction cannot be accounted for by MLC phosphorylation. One hypothesis that has received experimental support involves the thin filament protein caldesmon. Caldesmon inhibits myosin ATPase activity; phosphorylation of caldesmon relieves this inhibitory effect. The primary candidates for catalysis of caldesmon phosphorylation are the p42/p44 ERK MAP kinases. However, we and others have shown that inhibition of the ERK MAP kinases has no effect on many smooth muscles. The goal of this study was to determine if evidence for a second endogenous caldesmon kinase may be obtained. We used Triton X-100 skinned and intact tissues of the swine carotid artery to address this goal. Caldesmon phosphorylation was evident in resting and Ca(2+) stimulated Triton X-100 skinned fibers. Ca(2+)-dependent caldesmon phosphorylation was partially sensitive to the ERK MAP kinase inhibitor PD98059, whereas all caldesmon phosphorylation was sensitive to the general kinase inhibitor, staurosporine. Histamine increased caldesmon phosphorylation levels in intact swine carotid artery, which was sensitive to both PD98059 and staurosporine. Histamine increased ERK MAP kinase activity, which was reversed by PD98059, staurosporine, and EGTA. Histamine-induced contractions were inhibited by staurosporine but not by PD98059. We interpret these results to suggest that although ERK MAP kinases catalyze caldesmon phosphorylation, a second staurosporine sensitive kinase is also important in caldesmon phosphorylation and it is this pathway that may be more important in contractile regulation.  相似文献   

16.
The signaling cascades initiated by motilin receptors in gastric and intestinal smooth muscle cells were characterized. Motilin bound with high affinity (IC(50) 0.7 +/- 0.2 nM) to receptors on smooth muscle cells; the receptors were rapidly internalized via G protein-coupled receptor kinase 2 (GRK2). Motilin selectively activated G(q) and G(13), stimulated G alpha(q)-dependent phosphoinositide (PI) hydrolysis and 1,4,5-trisphosphate (IP(3))-dependent Ca(2+) release, and increased cytosolic free Ca(2+). PI hydrolysis was blocked by expression of G alpha(q) minigene and augmented by overexpression of dominant negative RGS4(N88S) or GRK2(K220R). Motilin induced a biphasic, concentration-dependent contraction (EC(50) = 1.0 +/- 0.2 nM), consisting of an initial peak followed by a sustained contraction. The initial Ca(2+)-dependent contraction and myosin light-chain (MLC)(20) phosphorylation were inhibited by the PLC inhibitor U-73122 and the MLC kinase inhibitor ML-9 but were not affected by the Rho kinase inhibitor Y27632 or the PKC inhibitor bisindolylmaleimide. Sustained contraction and MLC(20) phosphorylation were RhoA dependent and mediated by two downstream messengers: PKC and Rho kinase. The latter was partly inhibited by expression of G alpha(q) or G alpha(13) minigene and abolished by coexpression of both minigenes. Sustained contraction and MLC(20) phosphorylation were partly inhibited by Y27632 and bisindolylmaleimide and abolished by a combination of both inhibitors. The inhibition reflected phosphorylation of two MLC phosphatase inhibitors: CPI-17 via PKC and MYPT1 via Rho kinase. We conclude that motilin initiates a G alpha(q)-mediated cascade involving Ca(2+)/calmodulin activation of MLC kinase and transient MLC(20) phosphorylation and contraction as well as a sustained G alpha(q)- and G alpha(13)-mediated, RhoA-dependent cascade involving phosphorylation of CPI-17 by PKC and MYPT1 by Rho kinase, leading to inhibition of MLC phosphatase and sustained MLC(20) phosphorylation and contraction.  相似文献   

17.
Mechanisms underlying the Ca2+-activated K+ channel (K(Ca)) blockers-induced oscillatory contractions were investigated in guinea pig tracheal smooth muscle. The mean oscillatory frequencies induced by charybdotoxin (ChTX; 100 nM) and iberiotoxin (IbTX; 100 nM) were 9.8+/-0.8 (counts/h) and 8.0+/-1.3 (counts/h), respectively. Apamin (1 microM ), a blocker of SK(Ca), induced no contraction in guinea pig trachea and did not affect ChTX-induced oscillatory contractions. In Ca2+ free solution, no ChTX-induced contraction was observed. Nifedipine (100 nM), a blocker of voltage-dependent Ca2+ channels, and SK&F 96365 (10 microM), a blocker of capacitative Ca2+ entry, completely abolished ChTX-induced oscillatory contractions. Ryanodine (1 microM) decreased the amplitude, but increased the frequency of the oscillatory contractions. Thapsigargin (1 microM) changed contractions from the oscillatory type to the sustained type. Moreover, the protein kinase C (PKC) inhibitor, bisindolylamaleimide I (1 microM), decreased the amplitude and frequency, but PKC activator, phorbol 12-myristate 13-acetate (1 microM), increased the frequency of oscillatory contractions. These results suggest that K(Ca) inhibitors-induced oscillatory contractions are initiated by Ca2+ influx through L-type voltage-dependent Ca2+ channels. The ryanodine-sensitive calcium release channels in the sarcoplasmic reticulum may play an important role in maintaining the oscillatory contractions. Moreover, PKC activity modulates these oscillatory contractions.  相似文献   

18.
We studied the contribution of store-operated or capacitative Ca2+-entry (SOCE or CCE, respectively) through store-operated Ca2+ channels (SOCCs) and the contribution of Ca2+-entry through receptor-operated, non-selective cation channels (ROCCs or NSCCs, respectively), on the M3-receptor-mediated (270 nM Ach) contractile response of porcine coronary smooth muscle strips by means of the respective inhibitors. In the presence of L-VOCC blockade (1 microM verapamil), LOE 908 (inhibition of NSCCs) decreased the contractile response to 75+/-5% (p<0.01, n=6), 2-APB (inhibition of SOCCs) and SK and F 96365 (inhibition of SOCCs and of NSCCs) decreased the response to 45+/-4% (p<0.001, n=10) and to 23+/-2% (p<0.001, n=5), respectively (control: Ach response in the presence of verapamil alone). In the absence of L-VOCC blockade, LOE 908 reduced the Ach-response to 49+/-7% (p<0.001, n=8) and SK and F 96365 to 3+/-2% (p<0.001, n=4) of control, whereas 2-APB transiently increased the response (peak effect: 130+/-11%; p<0.05, n=8). We conclude: (1) the main source of activator Ca2+ during the M3-receptor-mediated contractile response is the Ca2+ influx through L-VOCCs; (2) however, in the presence of L-VOCC blockade, the contractile response is mainly due to Ca2+-entry through SOCCs; (3) NSCCs may be considerably involved in M3-receptor-mediated contraction as they may serve to depolarize the membrane potential and, thus, to open L-VOCCs; (4) in primary tissue of vascular smooth muscle, both, SOCE and Ca2+-entry through NSCCs are activated during M3-receptor stimulation.  相似文献   

19.
Endothelin-1 (ET-1), a potent vasoconstrictor, is believed to contribute to the pathogenesis of hypoxic pulmonary hypertension. Previously we demonstrated that contraction induced by ET-1 in intrapulmonary arteries (IPA) from chronically hypoxic (CH) rats occurred independently of changes in intracellular Ca2+ concentration ([Ca2+]i), suggesting that ET-1 increased Ca2+ sensitivity. The mechanisms underlying this effect are unclear but could involve the activation of myosin light chain kinase, Rho kinase, PKC, or tyrosine kinases (TKs), including those from the Src family. In this study, we examined the effect of pharmacological inhibitors of these kinases on maximum tension generated by IPA from CH rats (10% O2 for 21 days) in response to ET-1. Experiments were conducted in the presence of nifedipine, an L-type Ca2+ channel blocker, to isolate the component of contraction that occurred without a change in [Ca2+]i. The mean change in tension caused by ET-1 (10(-8) M) expressed as a percent of the maximum response to KCl was 184.0+/-39.0%. This response was markedly inhibited by the Rho kinase inhibitors Y-27632 and HA-1077 and the TK inhibitors genistein, tyrphostin A23, and PP2. In contrast, staurosporine and GF-109203X, inhibitors of PKC, had no significant inhibitory effect on the tension generated in response to ET-1. We conclude that the component of ET-1-induced contraction that occurs without a change in [Ca2+]i in IPA from CH rats requires activation of Rho kinase and TKs, but not PKC.  相似文献   

20.
Cl- efflux induces depolarization and contraction of smooth muscle cells. This study was undertaken to explore the role of Cl- channels in endothelin-1 (ET-1)-induced contraction in rabbit basilar artery. Male New Zealand White rabbits (n = 26), weighing 1.8-2.5 kg, were euthanized by an overdose of pentobarbital. The basilar arteries were removed for isometric tension recording. ET-1 produced a concentration-dependent contraction of the rabbit basilar artery in the normal Cl- Krebs-Henseleit bicarbonate buffer (123 mM Cl-). The ET-1-induced contraction was reduced by the following manipulations: 1) inhibition of Na+-K+-2Cl- cotransporter with bumetanide (3 x 10(-5) and 10(-4) M), 2) bicarbonate-free solution to disable Cl-/HCO exchanger, and 3) preincubation of rings with the Cl- channel blockers niflumic acid, 5-nitro-2-(3-phenylpropylamino)benzoic acid, and indanyloxyacetic acid 94. The ET-1-induced contraction was enhanced by substitution of extracellular Cl- (10 mM) with methanesulfonic acid (113 mM). Cl- channels are involved in ET-1-induced contraction in the rabbit basilar artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号