首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
Wnt signaling is known to be required for the normal development of the vertebrate midbrain and hindbrain, but genetic loss of function analyses in the mouse and zebrafish yield differing results regarding the relative importance of specific Wnt loci. In the zebrafish, Wnt1 and Wnt10b functionally overlap in their control of gene expression in the ventral midbrain-hindbrain boundary (MHB), but they are not required for the formation of the MHB constriction. Whether other wnt loci are involved in zebrafish MHB development is unclear, although the expression of at least two wnts, wnt3a and wnt8b, is maintained in wnt1/wnt10b mutants. In order to address the role of wnt3a in zebrafish, we have isolated a full length cDNA and examined its expression and function via knockdown by morpholino antisense oligonucleotide (MO)-mediated knockdown. The expression pattern of wnt3a appears to be evolutionarily conserved between zebrafish and mouse, and MO knockdown shows that Wnt3a, while not uniquely required for MHB development, is required in the absence of Wnt1 and Wnt10b for the formation of the MHB constriction. In zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b, the expression of engrailed orthologs, pax2a and fgf8 is not maintained after mid-somitogenesis. In contrast to acerebellar and no isthmus mutants, in which midbrain and hindbrain cells acquire new fates but cell number is not significantly affected until late in embryogenesis, zebrafish embryos lacking Wnt3a, Wnt1 and Wnt10b undergo extensive apoptosis in the midbrain and cerebellum anlagen beginning in mid-somitogenesis, which results in the absence of a significant portion of the midbrain and cerebellum. Thus, the requirement for Wnt signaling in forming the MHB constriction is evolutionarily conserved in vertebrates and it is possible in zebrafish to dissect the relative impact of multiple Wnt loci in midbrain and hindbrain development.  相似文献   

3.
We isolated a full-length cDNA clone for the zebrafish homologue of fibroblast growth factor receptor (FGFR) 2. The deduced protein sequence is typical of vertebrate FGFRs in that it has three Ig-like domains in the extracellular region. The expression of fgfr2 is initiated during epiboly in the paraxial mesoderm. During early somitogenesis, fgfr2 expression was noted in the anterior neural plate as well as in newly formed somites. Whereas fgfr2 expression in somites is transient, it increases in the central nervous system (CNS), i.e. in the ventral telencephalon, anterior diencephalon, midbrain, and respective rhombomeres of the hindbrain, from the mid-somitogenesis stage. The dorsal telencephalon and the region around the midbrain-hindbrain boundary are devoid of fgfr2 expression. Essentially the same expression pattern is observed until 48 h post-fertilization in the CNS, although rhombomeric expression in the hindbrain is progressively confined to narrower stripes. After somitogenesis, fgfr2 expression was also observed in the lens, hypochord, endoderm, and fin mesenchyme. We compared the expression of the four fgfr genes (fgfr1-4) in the CNS of zebrafish embryos and show that fgfr1 is the only fgfr gene that is expressed in the dorsal telencephalon and isthmic region from which expression of fgfr2-4 is absent.  相似文献   

4.
We isolated a full-length cDNA clone for the zebrafish homologue of fibroblast growth factor receptor (FGFR) 2. The deduced protein sequence is typical of vertebrate FGFRs in that it has three Ig-like domains in the extracellular region. The expression of fgfr2 is initiated during epiboly in the paraxial mesoderm. During early somitogenesis, fgfr2 expression was noted in the anterior neural plate as well as in newly formed somites. Whereas fgfr2 expression in somites is transient, it increases in the central nervous system (CNS), i.e. in the ventral telencephalon, anterior diencephalon, midbrain, and respective rhombomeres of the hindbrain, from the mid-somitogenesis stage. The dorsal telencephalon and the region around the midbrain-hindbrain boundary are devoid of fgfr2 expression. Essentially the same expression pattern is observed until 48 h post-fertilization in the CNS, although rhombomeric expression in the hindbrain is progressively confined to narrower stripes. After somitogenesis, fgfr2 expression was also observed in the lens, hypochord, endoderm, and fin mesenchyme. We compared the expression of the four fgfr genes (fgfr1-4) in the CNS of zebrafish embryos and show that fgfr1 is the only fgfr gene that is expressed in the dorsal telencephalon and isthmic region from which expression of fgfr2-4 is absent.  相似文献   

5.
The midbrain-hindbrain interface gives rise to a boundary of particular importance in CNS development as it forms a local signalling centre, the proper functioning of which is essential for the formation of tectum and cerebellum. Positioning of the mid-hindbrain boundary (MHB) within the neuroepithelium is dependent on the interface of Otx2 and Gbx2 expression domains, yet in the absence of either or both of these genes, organiser genes are still expressed, suggesting that other, as yet unknown mechanisms are also involved in MHB establishment. Here, we present evidence for a role for Notch signalling in stabilising cell lineage restriction and regulating organiser gene expression at the MHB. Experimental interference with Notch signalling in the chick embryo disrupts MHB formation, including downregulation of the organiser signal Fgf8. Ectopic activation of Notch signalling in cells of the anterior hindbrain results in an exclusion of those cells from rhombomeres 1 and 2, and in a simultaneous clustering along the anterior and posterior boundaries of this area, suggesting that Notch signalling influences cell sorting. These cells ectopically express the boundary marker Fgf3. In agreement with a role for Notch signalling in cell sorting, anterior hindbrain cells with activated Notch signalling segregate from normal cells in an aggregation assay. Finally, misexpression of the Notch modulator Lfng or the Notch ligand Ser1 across the MHB leads to a shift in boundary position and loss of restriction of Fgf8 to the MHB. We propose that differential Notch signalling stabilises the MHB through regulating cell sorting and specifying boundary cell fate.  相似文献   

6.
7.
8.
The expression of all four fgfr genes was extensively examined throughout early embryogenesis of the zebrafish (Danio rerio). fgfr1 alone was expressed maternally throughout the blastoderm, and then zygotically in the anterior neural plate and presomitic mesoderm. fgfr4 expression was first detected in late blastulae and was gradually restricted to the brain. fgfr2 and fgfr3 expression were initiated in early and late gastrulae, respectively; fgfr2 was expressed in the anterior neural plate and somitic mesoderm, whereas fgfr3 was activated in the axial mesoderm and then in the midbrain and somitic mesoderm. During somitogenesis, each of these fgfr genes was expressed in a characteristic manner in the brain. Using an FGF signal inhibitor, dominant-negative FGF receptors and fgf8.1/fgf8a mutants, we found that fgfr expression is directly or indirectly regulated by FGF signaling during epiboly and at the end of somitogenesis, revealing the presence of an autoregulatory mechanism.  相似文献   

9.
Gbx2 is a homeobox gene that plays a crucial role in positioning the mid/hindbrain organizer (isthmus), which regulates midbrain and cerebellar development primarily through the secreted factor FGF8. In Gbx2 null homozygotes, rhombomeres (r) 1-3 fail to develop and the isthmic expression of Fgf8 is reduced and disorganized. These mutants fail to form a cerebellum, as it is derived from r1. Here, we analyze mice homozygous for a Gbx2 hypomorphic allele (Gbx2(neo)). Quantitative RT-PCR and RNA in situ analyses indicate that the presence of a neo-resistance cassette impairs normal Gbx2 splicing thus reducing wild-type Gbx2 mRNA levels to 6-10% of normal levels in all domains and stages examined. In Gbx2 hypomorphic mutants, gene marker and neuronal patterning analyses indicate that reduced Gbx2 expression is sufficient to support the development of r3 but not r2. The posterior region of r1, from which the lateral cerebellum develops, is unaffected in these mutants. However, the anterior region of r1 is converted to an isthmus-like tissue. Hence, instead of expressing r1 markers, this region displays robust expression of Fgf8 and Fgf17, as well as the downstream FGF targets Spry1 and Spry4. Additionally, we demonstrate that the cell division regulator cyclin D2 is downregulated, and that cellular proliferation is reduced in both the normal isthmus and in the mutant anterior r1. As a result of this transformation, the cerebellar midline fails to form. Thus, our studies demonstrate different threshold requirements for the level of Gbx2 gene product in different regions of the hindbrain.  相似文献   

10.
The neuroectodermal tissue close to the midbrain-hindbrain boundary (MHB) is an important secondary organizer in the developing neural tube. This so-called isthmic organizer (IsO) secretes signaling molecules, such as fibroblast growth factors (FGFs), which regulate cellular survival, patterning and proliferation in the midbrain and rhombomere 1 (R1) of the hindbrain. We have previously shown that FGF-receptor 1 (FGFR1) is required for the normal development of this brain region in the mouse embryo. Here, we have compared the gene expression profiles of midbrain-R1 tissues from wild-type embryos and conditional Fgfr1 mutants, in which FGFR1 is inactivated in the midbrain and R1. Loss of Fgfr1 results in the downregulation of several genes expressed close to the midbrain-hindbrain boundary and in the disappearance of gene expression gradients in the midbrain and anterior hindbrain. Our screen identified several previously uncharacterized genes which may participate in the development of midbrain-R1 region. Our results also show altered neurogenesis in the midbrain and R1 of the Fgfr1 mutants. Interestingly, the neuronal progenitors in midbrain and R1 show different responses to the loss of signaling through FGFR1.  相似文献   

11.
The cerebellar structures of teleosts are markedly different from those of other vertebrates. The cerebellum continues rostrally into the midbrain ventricle, forming the valvula cerebelli, only in ray-finned fishes among vertebrates. To analyze the ontogenetic processes that underlie this morphological difference, we examined the early development of the cerebellar regions, including the isthmus (mid/hindbrain boundary, MHB), of the medaka (Oryzias latipes), by histology and in-situ hybridization using two gene (wnt1 and fgf8) probes. Isthmic wnt1 was expressed stably in the caudalmost mesencephalic region in the neural tube at all developmental stages examined, defining molecularly the caudal limit of the mesencephalon. The wnt1-positive mesencephalic cells became located rostrally to the isthmic constriction at Iwamatsu's stages 25-26. Isthmic fgf8 expression changed dynamically and became restricted to the rostralmost metencephalic region at stage 24. The rostralmost part (prospective valvula cerebelli) of the fgf8-positive rostral metencephalon protruded rostrally into the midbrain ventricle, bypassing the isthmic constriction, at stages 25-26. Thus, the isthmic constriction shifted caudally with respect to the molecularly defined MHB at stages 25-26. Paired cerebellar primordia were formed from the alar plates of the fgf8-positive rostral metencephalon and the fgf8-negative caudal metencephalon in the medaka neural tube. Our results show that cerebellar development differs between teleosts and murines: both the rostral and caudal metencephalic alar plates develop into the cerebellum in medaka, whereas in the murines only the caudal metencephalic alar plate develops into the cerebellum, and the rostral plate is reduced to a thin membrane.  相似文献   

12.
13.
Development and differentiation of the vertebrate caudal midbrain and anterior hindbrain are dependent on the isthmic organizer signals at the midbrain/hindbrain boundary (MHB). The future MHB forms at the boundary between the Otx2 and Gbx2 expression domains. Recent studies in mice and chick suggested that the apposition of Otx2- and Gbx2-expressing cells is instrumental for the positioning and early induction of the MHB genetic cascade. We show that Otx2 and Gbx2 perform different roles in this process. We find that ectopically expressed Otx2 on its own can induce a substantial part of the MHB genetic network, namely En2, Wnt1, Pax-2, Fgf8 and Gbx2, in a concentration-dependent manner. This induction does not require protein synthesis and ends during neurulation. In contrast, Gbx2 is a negative regulator of Otx2 and the MHB genes. Based on the temporal patterns of expression of the genes involved, we propose that Otx2 might be the early inducer of the isthmic organizer genetic network while Gbx2 restricts Otx2 expression along the anterior-posterior axis and establishes an Otx2 gradient.  相似文献   

14.
The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.  相似文献   

15.
The vertebrate brain is regionalized during development into forebrain, midbrain and hindbrain. Fibroblast growth factor 8 (FGF8) is expressed in the midbrain/hindbrain boundary (MHB) and functions as an organizer molecule. Previous studies demonstrated that the brain of basal chordates or ascidians is also regionalized at least into fore/midbrain and hindbrain. To better understand the ascidian brain regionalization, the expression of the Ciona Fgf8/17/18 gene was compared with the expression of Otx, En and Pax2/5/8 genes. The expression pattern of these genes resembled that of the genes in the vertebrate forebrain, midbrain, MHB and hindbrain, each of those domains being characterized by sole or combined expression of Otx, Pax2/5/8, En and Fgf8/17/18. In addition, the putative forebrain and midbrain expressed Ci-FgfL and Ci-Fgf9/16/20, respectively. Therefore, the regionalization of the ascidian larval central nervous system was also marked by the expression of Fgf genes.  相似文献   

16.
The upper rhombic lip (URL), a germinal zone in the dorsoanterior hindbrain, has long been known to be a source for neurons of the vertebrate cerebellum. It was thought to give rise to dorsally migrating granule cell precursors (Figure 1e); however, recent fate mapping studies have questioned the exclusive contributions of the URL to granule cells. By taking advantage of the clarity of the zebrafish embryo during the stages of brain morphogenesis, we have followed the fate of neuronal precursor cells generated within the upper rhombic lip directly. Combining a novel GFP labeling strategy with in vivo time-lapse imaging, we find, contrary to the former view, that most URL-descendants migrate anterior toward the midhindbrain boundary (MHB) and then course ventrally along the MHB (Figure 1f). As the migrating neuronal precursors reach the MHB, they form ventrally extending projections, likely axons, and continue ventral migration to settle outside of the cerebellum, in the region of the ventral brainstem. Thus, we define a new pathway for URL-derived neuronal precursor cells consistent with the recent fate maps. In addition, our results strongly suggest that the MHB plays a crucial role, not only in induction and patterning of the cerebellar anlage, but also in organizing its later morphogenesis by influencing cell migration.  相似文献   

17.
The midbrain–hindbrain boundary (MHB) acts as an organiser/signalling centre to pattern tectal and cerebellar compartments. Cells in adjacent compartments must be distinct from each other for boundary formation to occur at the interface. Here we have identified the leucine-rich repeat (LRR) neuronal 1 (Lrrn1) protein as a key regulator of this process in chick. The Lrrn family is orthologous to the Drosophila tartan/capricious (trn/caps) family. Differential expression of trn/caps promotes an affinity difference and boundary formation between adjacent compartments in a number of contexts; for example, in the wing, leg and eye imaginal discs. Here we show that Lrrn1 is expressed in midbrain cells but not in anterior hindbrain cells. Lrrn1 is down-regulated in the anterior hindbrain by the organiser signalling molecule FGF8, thereby creating a differential affinity between these two compartments. Lrrn1 is required for the formation of MHB — loss of function leads to a loss of the morphological constriction and loss of Fgf8. Cells overexpressing Lrrn1 violate the boundary and result in a loss of cell restriction between midbrain and hindbrain compartments. Lrrn1 also regulates the glycosyltransferase Lunatic Fringe, a modulator of Notch signalling, maintaining its expression in midbrain cells which is instrumental in MHB boundary formation. Thus, Lrrn1 provides a link between cell affinity/compartment segregation, and cell signalling to specify boundary cell fate.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号