首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cyclic fed-batch bioprocess is designed and a significant improvement of rice alpha-amylase productivity of recombinant Yarrowia lipolytica is illustrated. A bioprocess control strategy developed and reported here entails use of a genetically stable recombinant cloned for heterologous protein, use of optimized media for cell growth and enzyme production phases, and process control strategy enabling high cell-density culture and high alpha-amylase productivity. This process control can be achieved through maintaining a constant optimal specific cell growth rate at a predetermined value (i.e., 0.1 h-1), controlling medium feed rate commensurate with the cell growth rate, and maintaining a high cell-density culture (i.e., 60-70 g/L) for high productivity of cloned heterologous protein. The volumetric enzyme productivity (1, 960 units/L. h) achieved from the cyclic fed-batch process was about 3-fold higher than that of the fed-batch culture process (630 units/L. h).  相似文献   

2.
The cell cycle dependency of rice alpha-amylase production in Saccharomyces cerevisiae was investigated using synchronous and arrested cultures. The results of two separate synchronous cultures, using alpha-mating factor and a cdc28 mutant, indicated that the rice alpha-amylase-specific production rate is not constant during the cell cycle. The specific production rates during G1, S, and M phases were then ascertained by inhibiting the progression of the cell cycle using alpha-mating factor, hydroxyurea, and nocodazole, respectively. The specific production rate was found to be maximal during the M phase. The increase in the specific production rate during the M phase was confirmed from the accumulation of M-phase cells using a cdc15 mutant. The intracellular content of rice alpha-amylase was also measured during the cell cycle. Like the specific production rate, the intracellular content was found to fluctuate throughout the cell cycle, and to reach a maximum during M phase. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 262-271, 1997.  相似文献   

3.
The physiology of three strains of Aspergillus nidulans was examined--a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biomass formation and alpha-amylase production was characterised. Overexpression of the creA gene resulted in a lower maximum specific growth rate and a slightly higher repression of the alpha-amylase production during conditions with high glucose concentration. No expression of creA also resulted in a decreased maximum specific growth rate, but also in drastic changes in morphology. Furthermore, the expression of alpha-amylase was completely derepressed and creA thus seems to be the only regulatory protein responsible for glucose repression of alpha-amylase expression. The effect of different carbon sources on the alpha-amylase production in the creA deletion strain was investigated and it was found that starch was the best inducer. The degree of induction by starch increased almost linearly with the concentration of starch in starch/glucose mixtures. High-density batch cultivation was performed with the creA deletion strain and a final titre of 6.0 g l(-1) of alpha-amylase was reached after 162 h of cultivation.  相似文献   

4.
A mathematical model for kefiran production by Lactobacillus kefiranofaciens was established, in which the effects of pH, substrate and product on cell growth, exopolysaccharide formation and substrate assimilation were considered. The model gave a good representation both of the formation of exopolysaccharides (which are not only attached to cells but also released into the medium) and of the time courses of the production of galactose and glucose in the medium (which are produced and consumed by the cells). Since pH and both lactose and lactic acid concentrations differently affected production and growth activity, the model included the effects of pH and the concentrations of lactose and lactic acid. Based on the mathematical model, an optimal pH profile for the maximum production of kefiran in batch culture was obtained. In this study, a simplified optimization method was developed, in which the optimal pH profile was determined at a particular final fermentation time. This was based on the principle that, at a certain time, switching from the maximum specific growth rate to the critical one (which yields the maximum specific production rate) results in maximum production. Maximum kefiran production was obtained, which was 20% higher than that obtained in the constant-pH control fermentation. A genetic algorithm (GA) was also applied to obtain the optimal pH profile; and it was found that practically the same solution was obtained using the GA.  相似文献   

5.
A fuzzy logic controller (FLC) for the control of ethanol concentration was developed and utilized to realize the maximum production of glutathione (GSH) in yeast fedbatch culture. A conventional fuzzy controller, which uses the control error and its rate of change in the premise part of the linguistic rules, worked well when the initial error of ethanol concentration was small. However, when the initial error was large, controller overreaction resulted in an overshoot.An improved fuzzy controller was obtained to avoid controller overreaction by diagnostic determination of "glucose emergency states" (i.e., glucose accumulation or deficiency), and then appropriate emergency control action was obtained by the use of weight coefficients and modification of linguistic rules to decrease the overreaction of the controller when the fermentation was in the emergency state. The improved fuzzy controller was able to control a constant ethanol concentration under conditions of large initial error.The improved fuzzy control system was used in the GSH production phase of the optimal operation to indirectly control the specific growth rate mu to its critical value mu(c). In the GSH production phase of the fed-batch culture, the optimal solution was to control mu to mu(c) in order to maintain a maximum specific GSH production rate. The value of mu(c) also coincided with the critical specific growth rate at which no ethanol formation occurs. Therefore, the control of mu to mu(c) could be done indirectly by maintaining a constant ethanol concentration, that is, zero net ethanol formation, through proper manipulation of the glucose feed rate. Maximum production of GSH was realized using the developed FLC; maximum production was a consequence of the substrate feeding strategy and cysteine addition, and the FLC was a simple way to realize the strategy. (c) 1993 John Wiley & Sons, Inc.  相似文献   

6.
In order to achieve enhanced cell mass and productivity with less lactate accumulation, a fed-batch culture based on a combined feeding strategy of glucose and galactose was developed. Cell performance was first examined with feeding of galactose alone. While cell growth was improved compared with glucose-feeding culture, cell maintenance was inefficient with rapid lactate depletion and considerable ammonium accumulation. Subsequently, to improve cell maintenance, a combined feeding strategy of glucose and galactose was proposed focusing on optimizing the ratio of glucose to galactose and feeding time. In addition, the compositions of amino acids and vitamins in feeding medium were refined for balanced supply of nutrients. With the combined feeding strategy, the metabolic shift of lactate from production to consumption occurred, but not accompanied by rapid lactate depletion and ammonium production. Furthermore, energy metabolism was more efficient and better utilization of carbon sources was achieved. Compared with the glucose-feeding culture in bioreactor, maximum lactate concentration was reduced by 55%; IVCC and the specific production rate of antibody were increased by 45% and 143%, respectively.  相似文献   

7.
The aim of this study is to develop a strategy for maximum production of a target product with a simplified model derived from a metabolic reaction network through an example of lysine production. Based on the model, a search for the optimal specific growth rate profile was conducted among the available conditions of batch fermentation based on the derived model, when the total fermentation time was fixed. The optimal specific growth rate was obtained as a boundary control: initially, the specific growth rate was maintained at a maximum value and was subsequently switched to a critical value giving the maximum specific production rate. To make the specific growth rate follow this optimal profile as accurately as possible in batch mode, first, an appropriate initial concentration of leucine was employed in the experiment. Second, the feeding strategy of leucine was further studied. The specific growth rate profile with feeding was closer to the optimal one and the amount of lysine produced at the final stage of fermentation was increased about twofold, compared to that in the batch fermentation. Finally, the strategy was summarized as an algorithm for general use of this method.  相似文献   

8.
The optimal of the specific growth rate was obtained with simple mathematical model in a yeast fed-batch cultures. The model was based on the mass balance around the fed-batch system and the relationship between the specific growth rate, mu, and the specific production rate of glutathione, rho(G). The optimal profile of mu was calculated as a bang-bang type, That is mu, should start from the maximum value, mu(max) and should be kept at mu(max); then mu should be switched to mu(c), which gives a maximum value of rho(G). It was proven from the maximum principle that switching was needed only once, with the switching time from mu(max) to mu(c) depending on the final required glutathione content. Finally, this ideal profile of mu for the maximum production of glutathione was realized by manipulating the substrates feed rate in the fed-batch culture. Using the extended Kalman filter and a programmed-controller/feedback-compensator (PF) system, mu could be controlled at the optimal profile obtained. As a result, the maximum production of glutathione was accomplished fairly successfully. However, further improvement in the controller performance for mu is desired. The control strategy employed here can be applied to other batch reaction processes.  相似文献   

9.
Chinese hamster ovary (CHO) cells are characterized by a low glucose catabolic efficiency, resulting in undesirable lactate production. Here, it is hypothesized that such low efficiency is determined by the transport of pyruvate into the mitochondria. The mitochondrial pyruvate carrier (MPC), responsible for introducing pyruvate into the mitochondria, is formed by two subunits, MPC1 and MPC2. Stable CHO cell lines, overexpressing the genes of both subunits, were constructed to facilitate the entry of pyruvate into the mitochondria and its incorporation into oxidative pathways. Significant overexpression of both genes, compared to the basal level of the control cells, was verified, and subcellular localization of both subunits in the mitochondria was confirmed. Kinetic evaluation of the best MPC overexpressing CHO cells showed a reduction of up to 50% in the overall yield of lactate production with respect to the control. An increase in specific growth rate and maximum viable cell concentration, as well as an increase of up to 40% on the maximum concentration of two recombinant model proteins transiently expressed (alkaline phosphatase or a monoclonal antibody), was also observed. Hybrid cybernetic modeling, that considered 89 reactions, 25 extracellular metabolites, and a network of 62 intracellular metabolites, explained that the best MPC overexpression case resulted in an increased metabolic flux across the mitochondrial membrane, activated a more balanced growth, and reduced the Warburg effect without compromising glucose consumption rate and maximum cell concentration. Overall, this study showed that transport of pyruvate into the mitochondria limits the efficiency of glucose oxidation, which can be overcome by a cell engineering approach.  相似文献   

10.
11.
Growth and alpha-amylase production characteristics of Bacillus amyloliquefaciens strain F (ATCC 23350) in batch cultures are examined using glucose or maltose as the carbon source. While the cell growth is rapid when glucose is used as the carbon source, higher cell mass, higher total and specific enzyme activities, and higher enzyme production rates are obtained when maltose is used as the carbon source. The overall specific enzyme activity decreases with an increase in the initial concentration of carbon source. The oxygen requirement and carbon dioxide generation vary linearly with the maximum amount of cell mass produced. For experiments conducted using glucose as the carbon source, the kinetics of cell growth and glucose consumption are described using a special form of the Vavilin equation. For a given amount of initial carbon source, the enzyme synthesis capability is retained by the microorganism, although at a substantially reduced level, under severe oxygen limitation.  相似文献   

12.
A High cephamycin C producing strain of Nocardia lactam-durans was used to study cell growth and antibiotics production in defined media. Batch fermentations in shake flasks and stirred tanks showed that antibiotic production occurred during cell growth and the production rate rapidly decline as the growth slowed. Glutamate served as a primary substrate during this phase. Later, ammonia was utilized along with a remainder of the glucose. Rapid antibiotic production occurred in this phase. Increased glutamate promoted higher growth, a rise in ammonium ion concentration, and a marked reduction in antibiotic titers. An increase of the glucose concentration along with the glutamate concentration balanced to the medium; no ammonium ion rise occurred and a peak specific antibiotic titer comparable to the control medium was obtained. In a phosphate-limited medium, cell growth equivalent to the control medium and increased antibiotic titers were obtained. In these experiments, adjustment of Na(+) and K(+) ion concentration equal to that in the control medium was found to be important. Based on carbon and nitrogen balances, the activity of the key nitrogen metabolism enzymes, and the published literature, a two-stage model of regulation is suggested.  相似文献   

13.
Growth of Bacillus subtilis TN106[pAT5] and synthesis of plasmid-encoded protein (alpha-amylase) are investigated in batch, continuous, and fed-batch cultures using a defined medium containing glucose and/or starch as the carbohydrate source. The batch culture studies reveal that reduced availability of arginine hampers growth of recombinant cells (which lack an arginine synthesis gene) but promotes production of alpha-amylase and substitution of glucose by starch as the carbohydrate source leads to slower growth of recombinant cells and increased production of alpha-amylase per unit cell mass. Retention of recombinant cells over prolonged periods in continuous cultures is not possible without continuous application of antibiotic selection pressure owing to segregational plasmid instability. Fed-batch experiments with constant volumetric feed rate demonstrate that alpha-amylase production is enhanced at lower feed concentration of starch (sole carbohydrate source) and lower volumetric feed rate. Such slow addition of starch is however not conducive for growth of recombinant cells. The expression of the thermostable alpha-amylase gene carried on the recombinant plasmid pAT5 (derived from a plasmid isolated from a thermophilic bacterium) is promoted at higher temperatures, while growth of recombinant cells is depressed. In all batch and fed-batch experiments, production of alpha-amylase is observed to be inversely related to growth of recombinant cells. The efficacy of two-stage bioreactor operations, with growth of recombinant cells being promoted in the first stage and alpha-amylase production in the second stage, in attaining increased bulk alpha-amylase activity is demonstrated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

14.
15.
Glucose control is vital to ensure consistent growth and protein production in mammalian cell cultures. The typical fed‐batch glucose control strategy involving bolus glucose additions based on infrequent off‐line daily samples results in cells experiencing significant glucose concentration fluctuations that can influence product quality and growth. This study proposes an on‐line method to control and manipulate glucose utilizing readily available process measurements. The method generates a correlation between the cumulative oxygen transfer rate and the cumulative glucose consumed. This correlation generates an on‐line prediction of glucose that has been successfully incorporated into a control algorithm manipulating the glucose feed‐rate. This advanced process control (APC) strategy enables the glucose concentration to be maintained at an adjustable set‐point and has been found to significantly reduce the deviation in glucose concentration in comparison to conventional operation. This method has been validated to produce various therapeutic proteins across cell lines with different glucose consumption demands and is successfully demonstrated on micro (15 mL), laboratory (7 L), and pilot (50 L) scale systems. This novel APC strategy is simple to implement and offers the potential to significantly enhance the glucose control strategy for scales spanning micro‐scale systems through to full scale industrial bioreactors.  相似文献   

16.
In this study, a cephalosporin C producing strain, Cephalosporium acremonium (ATCC 36225), was chosen to determine the optimal conditions that maximize antibiotic production in a mixed substrate of glucose and sucrose. A model for cell growth and cephalosporin C production at different pH and temperature was developed and the associated parameters were evaluated experimentally. Pontryagin's maximum principle, in conjunction with the model, was used to predict the optimal temperature and pH control profiles to maximize the production of antibiotic.  相似文献   

17.
During fed-batch cultivation of a recombinant Escherichia coli AT2471 harboring plasmid pSY130-14 for phenylalanine production, a large amount of acetic acid was excreted by the cells and accumulated in the culture medium. Acetic acid concentration reached 30-35 g/L at the end of a process conducted without special precautions for the reduction of this excretion. Cell growth stopped when acetic acid concentration was about 15 g/L, resulting in poor growth, 16 g/L cell concentration, and poor production - 8 g/L phenylalanine. A novel control strategy, called a balanced DO-stat. was developed to prevent acetic acid excretion. It represents a model-independent two-loop control structure, which is simple, reliable, and convenient for computer application. Using the balanced DO-stat, implemented in a computer control system, acetic acid concentration was kept at zero during the entire cultivation period. As a result, the cell concentration increased to 36 g/L and phenylalanine concentration reached 24 g/L. Aside from the phenylalanine fermentation, the proposed control approach might be applied to cultivation of other bacterial and yeast strains which have similar mechanism of the excretion of fermentative by-products.  相似文献   

18.
A nonlinear model of a recombinant Escherichia coli producing porcine growth hormone (pGH) fermentation was developed. The model was used to calculate a glucose feeding and temperature strategy to optimize the production of pGH. Simulations showed that the implementation of optimal feed and temperature profiles was sensitive to the maximum specific growth rate, and a mismatch could result in excessive acetate production and a significant reduction in pGH yield. An optimization algorithm was thus developed, using feedback control, to counter the effects of uncertainty in the specific growth rate and thus determine an optimal operating strategy for pGH production. This policy was experimentally implemented in a 10 L fermenter and resulted in a 125% increase in productivity over the previous best experimental result with this system—in spite of significant plant-model mismatch.  相似文献   

19.
《Process Biochemistry》2014,49(3):365-373
A three-stage control strategy independent of the organic substrate was developed for automated substrate feeding in a two-phase fed-batch culture of Cupriavidus necator DSM 545 for the production of the biopolymer polyhydroxybutyrate (PHB). The optimal feeding strategy was determined using glucose as the substrate. A combined substrate feeding strategy consisting of exponential feeding and a novel method based on alkali-addition monitoring resulted in a maximal cell concentration in the biomass growth phase. In the PHB accumulation phase, a constant substrate feeding strategy based on the estimated amount of biomass produced in the first phase and a specific PHB accumulation rate was implemented to induce PHB under limiting nitrogen at different biomass concentrations. Maximal cell and PHB concentrations of 164 and 125 g/L were obtained when nitrogen feeding was stopped at 56 g/L of residual biomass; the glucose concentration was maintained within its optimal range. The developed feeding strategy was validated using waste glycerol as the sole carbon source for PHB production, and the three-stage control strategy resulted in a PHB concentration of 65.6 g/L and PHB content of 62.7% while keeping the glycerol concentration constant. It can thus be concluded that the developed feeding strategy is sensitive, robust, inexpensive, and applicable to fed-batch culture for PHB production independent of the carbon source.  相似文献   

20.
Cloned gene expression in recombinant Saccharomyces cerevisiae 20B-12 containing three different plasmids was compared in batch and fed-batch cultures. The plasmids pNA3, pNA7, and pNA9 contain the alpha-amylase gene under the control of SUC2, PGK, and GAL7 Promoters, respectively. The synthesis of alpha-amylase was therefore induced by low glucose concentration for the SUC2 and PGK promoters, and by galactose for GAL7 promoter. The specific cell growth rates were similar among cells harboring the three different plasmids; they decreased from 0.35 to 0.38 h(-1) during the cell growth phase to 0.03 to 0.06h(-1) during the production phase. The secretory alpha-amylase activity of cells harboring plasmid pNA7 was 129 U/mL in fed-batch culture, which was 1.4 and 2 times as high as the activities of cells harboring plasmids pNA3 and pNA9, respectively. The secretion ratios (amount of extracellular alpha-amylase activity/amounts of total alpha-amylase activity) of cells harboring plasmids pNA3, pNA7, and pNA9 were 91.4%, 94.5%, and 95.3%, respectively. (c) 1993 Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号