首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of substituents on the activities of a series of N2-α-substituted benzyl-N4-alkyl-2,4-diamino-6-chloro-s-triazines as inhibitors of photosystem II (PSII) was examined, and the phytotoxic differences between them and atrazine, as to the photosynthesis in leaf disks, mesophyll cells, intact chloroplasts and broken chloroplasts of spinach, and as to seedling-growth, were discussed. The inhibitory activity of the N2-α,α-dimethylbenzyl-N4-ethyl derivative (6), which was comparable on that of atrazine, was lower than those of the N2-α-alkylbenzyl analogues (1 ~5). The N4-?-alkyl-N2-α- methylbenzyl derivatives, in spite of the carbon length of the alkyl group, exhibited more potent activity than atrazine, but an a α β substitution of the N4-n-alkyl group caused a decrease in the activity with a few exceptions. These data may imply that the space of the binding site on PSII surrounding both the N2 and N4 amino groups is relatively large. The binding between the receptor site and the N4 amino group, however, is easily influenced by a slight structural change in an inhibitor. The herbicidal compounds, N2-α-methylbenzyl-A^4-ethyl (1), A^2-α,α-dimethylbenzyl-N4-1-methylpropyl (30) and N2-α-methylbenzyl-N4,N4-diethyl (42) derivatives, exhibited potent inhibitory activity in the seedling growth test under dark/light conditions, whereas atrazine was very poor. The inhibitory activity of compound (1) toward photosynthesis was poor with leaf disks, compared to atrazine, whereas, the order of their activities was the reverse for plant preparations such as abaxial epidermis peeled leaf disks, mesophyll cells, intact chloroplasts and broken chloroplasts. It was indicated that a change in the phytotoxic symptom in the whole plant assay would be correlated to the permeability of the compound through the plant membrane(s).  相似文献   

2.
Piperidinoethylesters of 2-, 3- and 4-alkoxysubstituted phenylcarbamic acids (alkoxy = methoxy - decyloxy) inhibit photosynthetic processes in algae and plant chloroplasts. The inhibitory activity is strongly dependent on the alkyl chain length of the alkoxy-substituent showing a typical quasi-parabolic dependence with maximum effect at 6-8 carbon atoms in the alkyl chain. The alkoxy-substitution in position 2 decreases the inhibitory activity of a compound when compared with its 3- and 4-substituted analogues. ESR studies of spinach chloroplasts confirm that the compounds studied cause destruction of PS II whereby, in the presence of the most effective of the derivatives tested, Mn2+ ions are released from the protein complex.  相似文献   

3.
The inhibitory effect was investigated of 16 different 3-formylchromone derivatives, the condensation products of 6-R1-3-formylchromone with 4-aminosalicylic acid and of the adducts of 6-R1-3-formylchromone withn-alcohols and aminosalicylic acids or some other derivatives of aniline, on the photochemical activity of spinach chloroplasts. The inhibitory activity of the compounds studied correlated with the lipophilicity of the R1 and R2 (alkoxy) substituents. Using fluorescence study it was found that the site of action of the studied effectors is photosystem (PS) 2. By EPR spectroscopy it was confirmed that the studied effectors interact with the intermediates Z+/Y+ which are situated in D 1 and D 2 proteins on the donor side of PS 2 which is reflected in a partial decrease in the photosynthetic electron flow through PS 2 to PS 1. It was found that the core of PS 2 is not damaged.  相似文献   

4.
Chloroplasts isolated from pine needles were found to be inactive with respect to CO2 fixation. Since it was suspected that pine needles may contain substances inhibitory to photosynthesis, studies were carried out using photosynthetically active isolated spinach chloroplasts and chloroplasts isolated from pine needles. When isolated pine chloroplasts were suspended in buffer and were added to isolated spinach chloroplasts they inhibited photosynthetic CO2 fixation. When the pine chloroplasts were separated from the medium by centrifugation, the separated pine chloroplasts severely inhibited CO2 fixation by isolated spinach chloroplasts, but the supernatant solution from the pine chloroplasts was not inhibitory. As little as 5% pine chloroplasts (based on chlorophyll content) produced 50% inhibition of CO2 fixation by the spinach chloroplasts. Studies of fixation of 14C-labelled CO2 by spinach chloroplasts were carried out in which after 5 min photosynthesis the pine chloroplasts were added. It was found that the subsequent inhibition of spinach CO2 fixation was neither due to any effect on the rate of export of photosynthetic metabolites from the chloroplasts to the medium, nor to a direct effect on the RUBP carboxylase reaction. The principal effect was found to be an inhibition of the conversion of fructose-1,6-bisphosphate and sedoheptulose-1,7-bisphosphate to the respective monophosphates and inorganic phosphate. From this finding it was concluded that a principal effect of the inhibition by pine chloroplasts is probably an inhibition either directly or indirectly of the bisphosphatase enzymes in the spinach chloroplasts. Based on its distribution between organic and aqueous acidic or neutral solutions, the inhibitory factor of the pine chloroplasts must be lipophilic. Most of the factor could be transferred to an aqueous phase in a strongly alkaline solution. Following subsequent acidification of the aqueous phase the activity could be completely transferred back into the organic phase. This procedure allowed for separation of the inhibitory factor from most of the pigments and other lipophilic substances present in the pine chloroplasts and yielded a preparation which could be subsequently fractionated by thin layer chromatography. UV absorption was found in two fast moving spots and at the origin. The fastest running spot from the thin layer chromatography plate was found to be the one containing most of the inhibitory activity.  相似文献   

5.
A preparation of photochemically active chloroplasts of Fucus was added to a low-salt medium with high osmolarity (HEPES AMPD buffer, 1M sorbitol). The rate of DCIP reduction (DCIPr) and the variable fluorescence (Fv) of these phaeoplasts were measured and compared with the same activities in spinach chloroplasts. A study of the influence of mono- and divalent-cations showed that salt effects on PS II activity also exist in Fucus.
  1. Mg++ action on Fv is similar, although noticeably weaker in Fucus than in spinach chloroplasts.
  2. Na+ has no effect on Fv of Fucus chloroplasts, but its influence on DCIPr is more pronounced than in spinach.
  3. Mg++ influence on DCIPr is largely dependent upon excitation energy. In subsaturating light (100\2-1000 W m\t-2), Mg++ stimulation increases up to 100 mM, almost doubling the level. In very low wight conditions (3Wm\t02), however, this stimulation saturates at about 10 mM; higher concentrations are no longer effective but do not quench DCIPr noticeably, unlike the case in spinach.
Therefore, cations act through similar pathways on Fucus as on spinach isolated chloroplasts but the effects on PS II centers are preponderant in Fucus whereas the modifications in non-radiative decay or pigment array size are weaker.  相似文献   

6.
Forti G  Gerola P 《Plant physiology》1977,59(5):859-862
Cyanide and azide inhibit photosynthesis and catalase activity of isolated, intact spinach (Spinacia oleracea) chloroplasts. When chloroplasts are illuminated in the presence of CN or N3, accumulation of H2O2 is observed, parallel to inhibition of photosynthesis. Photosynthetic O2 evolution is inhibited to the same extent, under saturating light, whether CO2 or phosphoglycerate is present as electron acceptor.  相似文献   

7.
The influence of vanadium compounds (vanadate, vanadyl citrate) on photosynthesis in Chlorella fusca and in algal and spinach chloroplasts has been investigated. It was found that: 1. At moderately high concentrations (at least 0.1 mM) both vanadate and vanadyl citrate enhance photosynthetic O2 production in intact C. fusca cells. At lower V concentration (about 2 μM) only vanadate stimulates photosynthesis. The increase is dependent on culture conditions and on light intensity. 2. Up to 1 mM V, neither vanadium compound influences PS II activity, either in intact cells or in algal or spinach chloroplasts. 3. The PS I reaction in algal and spinach chloroplasts is maximally enhanced (3-fold) in presence of vanadium (20 μM). The increase is independent of light intensity. 4. Cr(VI), Mo(VI), and W(VI) (1 mM) stimulate photosynthesis in intact C. fusca cells, but do not influence the photosystems of isolated chloroplasts. Vanadium is suggested to act as a redox catalyst in the electron transport from PS II to PS I.  相似文献   

8.
9.
John D. Mills  Geoffrey Hind 《BBA》1979,547(3):455-462
Intense illumination of isolated, intact, spinach chloroplasts triggers the well known proton-pumping Mg2+ ATPase activity of coupling factor, which can be assayed in subsequently lysed chloroplasts by monitoring ATP-driven quenching of 9-aminoacridine fluorescence. The light-triggered ATPase activity decays slowly in the dark and is inhibited by N,N′-dicyclohexylcarbodiimide. After osmotic lysis and washing of the chloroplasts, preillumination no longer triggers maximal proton-pumping ATPase until methylviologen and dithiothreitol are added to the medium. It is suggested that intact organelles contain soluble or loosely bound cofactors necessary for light-triggering of coupling factor ATPase. On osmotic lysis, these endogenous cofactors are diluted or inactivated and must be replaced by addition of a dithiol reagent and an electron acceptor.  相似文献   

10.
Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach   总被引:1,自引:0,他引:1  
The effects of nano-TiO2 (rutile) on the photochemical reaction of chloroplasts of spinach were studied. The results showed that when spinach was treated with 0.25% nano-TiO2, the Hill reaction, such as the reduction rate of FeCy, and the rate of evolution oxygen of chloroplasts was accelerated and noncyclic photophosphorylation (nc-PSP) activity of chloroplasts was higher than cyclic photophosphorylation (c-PSP) activity, the chloroplast coupling was improved and activities of Mg2+-ATPase and chloroplast coupling factor I (CF1)-ATPase on the thylakoid membranes were obviously activated. It suggested that photosynthesis promoted by nano-TiO2 might be related to activation of photochemical reaction of chloroplasts of spinach.  相似文献   

11.
The large subunit (LS) of tobacco (Nicotiana rustica) ribulose-1,5-bisphosphate carboxylase/oxygenase (ribulose-P2 carboxylase) contains a trimethyllysyl residue at position 14, whereas this position is unmodified in spinach ribulose-P2 carboxylase. A protein fraction was isolated from tobacco chloroplasts by rate-zonal centrifugation and anion-exchange fast protein liquid chromatography that catalyzed transfer of methyl groups from S-adenosyl-[methyl-3H]-l-methionine to spinach ribulose-P2 carboxylase. 3H-Methyl groups incorporated into spinach ribulose-P2 carboxylase were alkaline stable but could be removed by limited tryptic proteolysis. Reverse-phase high-performance liquid chromatography of the tryptic peptides released after proteolysis showed that the penultimate N-terminal peptide from the LS of spinach ribulose-P2 carboxylase contained the site of methylation, which was identified as lysine-14. Thus, the methyltransferase activity can be attributed to S-adenosylmethionine:ribulose-P2 carboxylase LS (lysine) `N-methyltransferase, a previously undescribed chloroplast enzyme. The partially purified enzyme was specific for ribulose-P2 carboxylase and exhibited apparent Km values of 10 micromolar for S-adenosyl-l-methionine and 18 micromolar for ribulose-P2 carboxylase, a Vmax of 700 picomoles CH3 groups transferred per minute per milligram protein, and a broad pH optimum from 8.5 to 10.0. S-Adenosylmethionine:ribulose-P2 carboxylase LS (lysine)εN-methyltransferase was capable of incorporating 24 3H-methyl groups per spinach ribulose-P2 carboxylase holoenzyme, forming 1 mole of trimethyllysine per mole of ribulose-P2 carboxylase LS, but was inactive on ribulose-P2 carboxylases that contain a trimethyllysyl residue at position 14 in the LS. The enzyme did not distinguish between activated (Mg2+ and CO2) and unactivated forms of ribulose-P2 carboxylase as substrates. However, complexes of activated ribulose-P2 carboxylase with the reaction-intermediate analogue 2′-carboxy-d-arabinitol-1,5-bisphosphate, or unactivated spinach ribulose-P2 carboxylase with ribulose-1,5-bisphosphate, were poor substrates for tobacco LS εN-methyltransferase.  相似文献   

12.
Jan W.T. Fiolet  Karel Van Dam 《BBA》1973,325(2):230-239
1. The inhibitory action of tetraphenylboron, a lipid-soluble anion, on the proton uptake, the photophosphorylation and the light-induced quenching of the fluorescence of 9-aminoacridine by spinach chloroplasts was studied.2. The inhibition of the three processes by tetraphenylboron was transient; the proton uptake was affected to a much smaller extent than either the photophosphorylation or the fluorescence quenching.3. The inhibitory effects of tetraphenylboron on the proton uptake and the fluorescence quenching of 9-aminoacridine were qualitatively the same in CF1-depleted chloroplasts, that were recoupled with N,N′-dicyclohexylcarbodiimide (DCCD).4. The reversal of the fluorescence quenching of 9-aminoacridine upon addition of tetraphenylboron in the light was found to be very fast, being completed within the response time of the apparatus.5. The presence of tetraalkylammonium salts in the incubation medium prevented the inhibitory effect of tetraphenylboron.6. Tetraphenylboron disappeared from the chloroplast suspension in a light-dependent irreversible way; in the dark no ‘ptake’ of tetraphenylboron could be detected.7. The effects of tetraphenylboron may be explained by the presence of groups with a high affinity for tetraphenylboron in the membrane; these groups become protonated upon illumination of the chloroplasts.  相似文献   

13.
A dihydroxyacetone phosphate (DHAP) reductase has been isolated in 50% yield from Dunaliella tertiolecta by rapid chromatography on diethylaminoethyl cellulose. The activity was located in the chloroplasts. The enzyme was cold labile, but if stored with 2 molar glycerol, most of the activity was restored at 30°C after 20 minutes. The spinach (Spinacia oleracea L.) reductase isoforms were not activated by heat treatment. Whereas the spinach chloroplast DHAP reductase isoform was stimulated by leaf thioredoxin, the enzyme from Dunaliella was stimulated by reduced Escherichia coli thioredoxin. The reductase from Dunaliella was insensitive to surfactants, whereas the higher plant reductases were completely inhibited by traces of detergents. The partially purified, cold-inactivated reductase from Dunaliella was reactivated and stimulated by 25 millimolar Mg2+ or by 250 millimolar salts, such as NaCl or KCl, which inhibited the spinach chloroplast enzyme. Phosphate at 3 to 10 millimolar severely inhibited the algal enzyme, whereas phosphate stimulated the isoform in spinach chloroplasts. Phosphate inhibition of the algal reductase was partially reversed by the addition of NaCl or MgCl2 and totally by both. In the presence of 10 millimolar phosphate, 25 millimolar MgCl2, and 100 millimolar NaCl, reduced thioredoxin causes a further twofold stimulation of the algal enzyme. The Dunaliella reductase utilized either NADH or NADPH with the same pH maximum at about 7.0. The apparent Km (NADH) was 74 micromolar and Km (NADPH) was 81 micromolar. Apparent Vmax was 1100 μmoles DHAP reduced per hour per milligram chlorophyll for NADH, but due to NADH inhibition highest measured values were 350 to 400. The DHAP reductase from spinach chloroplasts exhibited little activity with NADPH above pH 7.0. Thus, the spinach chloroplast enzyme appears to use NADH in vivo, whereas the chloroplast enzyme from Dunaliella or the cytosolic isozyme from spinach may utilize either nucleotide.  相似文献   

14.
(1) The relationship between activation of the membrane-bound ATPase and the stimulation of dissipation of the flash-induced membrane potential by preillumination was studied in intact spinach leaves by measuring the ATPase activity of rapidly isolated chloroplasts and the decay of the flash-induced 515-nm absorbance change (ΔA515) in intact leaves. (2) The decay of ΔA515 was accelerated by preillumination. The ΔA515 decay in leaves treated with N,N′-dicyclohexylcarbodiimide (DCCD) became slower and was not accelerated by preillumination. However, treatment with DCCD did not lower the intensity of delayed fluorescence. (3) Membrane-bound ATPase of chloroplasts which were rapidly isolated from the preilluminated leaves (90 s preparation time) showed a higher activity (over 200 μmol Pi/mg chlorophyll per h in the case of 2-min preillumination) than that of chloroplasts isolated from dark-adapted leaves. (4) The acceleration of ΔA515 decay and the activation of ATPase showed similar dependences on illumination time in intact leaves. 3-(3′,4′-Dichlorophenyl)-1,1-dimethylurea, carbonyl cyanide p-chlorophenylhydrazone and DCCD inhibited the activation of ATPase and the acceleration of the ΔA515 decay by preillumination. (5) The ATPase activity of chloroplasts isolated from illuminated leaves showed a single exponential decay (‘dark inactivation in vitro’). The ATPase activity induced by illuminating the leaves became lower as the dark interval between illumination and the isolation of chloroplasts was increased (‘dark inactivation in vivo’). The time course of the decay of activity had a lag and showed a sigmoidal curve when plotted semilogarithmically. The decay had an apparent half-time of 25 min. (6) The recovery of the accelerated ΔA515 decay in preilluminated leaves to the original slow rate showed a sigmoidal decay similar to that of the activity of ATPase in intact leaves with a half-time of about 23 min in the dark. (7) It was concluded that the decay rate of ΔA515 reflected the chloroplast ATPase activity in intact leaves and that the ion conductance of thylakoid membrane was mainly determined by the H+ flux through the ATPase, the activity of which was increased after the formation of the high-energy state.  相似文献   

15.
After acid-treatment of spinach (Spinacia oleracea) chloroplasts, various partial electron transport reactions are inactivated from 25 to 75%. Divalent cations in concentrations from 10 to 50 millimolar can partially restore electron transport rates. Two cation-specific sites have been found in photosystem II: one on the 3-(3,4-dichlorophenyl)-1, 1-dimethylurea-insensitive silicomolybdate pathway, which responds better to restoration by Mg2+ than by Ca2+ ions, the other on the forward pathway to photosystem I, located on the 2,5-dimethylbenzoquinone pathway. This site is selectively restored by Ca2+ ions. When protonated chloroplasts are treated with N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aziridine, a carboxyl group modifying reagent, presumed to react with glutamic and aspartic acid residues of proteins, restoration of electron transport at the Ca2+-selective site on the 2,5-dimethylbenzoquinone pathway is impaired, while no difference in restoration is seen at the Mg2+ site on the 3-(3,4-dichlorophenyl)-1,1-dimethylurea-insensitive silicomolybdate pathway.

Trypsin treatment of chloroplasts modifies the light-harvesting pigment-protein complex, destroys the dibromothymoquinone-insensitive 2,5-dimethyl-benzoquinone reduction, but does not interfere with the partial restoration of activity of this pathway by Ca2+ ions, implying that the selective Ca2+ effect on photosystem II (selective Ca2+ site) is different from its effects as a divalent cation on the light-harvesting pigment-protein complex involved in the excitation energy distribution between the two photosystems.

  相似文献   

16.
Glucosylation of adenine and 6-methylaminopurine was not detected in derooted 10-day-old radish seedlings. However, 4-(purin-6-ylamino)butanoic amide and 6-(3,4-dimethoxybenzylamino)purine (N6-substituted adenines with negligible cytokinin activity), like the highly active cytokinin 6-benzylaminopurine, were converted to 7-glucopyranosides. The N2-substituted guanine, 2-benzylaminopurin-6-one, and 6-benzylamino-2-(2-hydroxy-ethylamino)purine were also metabolized to glucosides which were probably 7-glucopyranosides. Hence glucosylation of purines is not restricted to N6-substituted adenines with strong cytokinin activity. Although only ca 1.6% of 6-benzylamino-9-(4-chlorobutyl)purine taken up by the derooted seedlings could be accounted for as 7- and 9-glucosides, a considerable proportion was metabolized to these glucosides in cotyledons excised from 2-day-old radish seedlings. The high cytokinin activity of this 9-substituted compound may be a consequence of cleavage of the 4-chlorobutyl groud at N-9.  相似文献   

17.
Studies were undertaken to further characterize the spinach (Spinacea oleracea) chloroplast envelope system, which facilitates H+ movement into and out of the stroma, and, hence, modulates photosynthetic activity by regulating stromal pH. It was demonstrated that high envelope-bound Mg2+ causes stromal acidification and photosynthetic inhibition. High envelope-bound Mg2+ was also found to necessitate the activity of a digitoxinand oligomycin-sensitive ATPase for the maintenance of high stromal pH and photosynthesis in the illuminated chloroplast. In chloroplasts that had high envelope Mg2+ and inhibited envelope ATPase activity, 2-(diethylamino)-N-(2,6-dimethylphenyl)acetamide was found to raise stromal pH and stimulate photosynthesis. 2-(Diethylamino)-N-(2,6-dimethylphenyl)acetamide is an amine anesthetic that is known to act as a monovalent cation channel blocker in mammalian systems. We postulate that the system regulating cation and H+ fluxes across the plastid envelope includes a monovalent cation channel in the envelope, some degree of (envelope-bound Mg2+ modulated) H+ flux linked to monovalent cation antiport, and ATPase-dependent H+ efflux.  相似文献   

18.
In this study, we present the synthesis and structure–activity relationships (SAR) of novel N-substituted nipecotic acid derivatives closely related to (S)-SNAP-5114 (2) in the pursuit of finding new and potent mGAT4 selective inhibitors. By the use of iminium ion chemistry, a series of new N-substituted nipecotic acid derivatives containing a variety of heterocycles, and an alkyne spacer were synthesized. Biological evaluation of the prepared compounds showed, how the inhibitory potency and subtype selectivity for the murine GABA transporters (mGATs) were influenced by the performed modifications.  相似文献   

19.
《Plant science》1986,43(3):185-191
Glutathione synthetase (γ-l-glutamyl-l-cysteine:glycine ligase [ADP-forming], EC 6.3.2.3) was partially-purified (100-fold) from spinach (Spinacia oleracea) leaves and its properties determined. At least part of the enzyme activity is localized in chloroplasts. The properties of the enzyme suggest that GSH synthesis would be facilitated at the pH and Mg2+ concentration in the stroma of illuminated chloroplasts, but glutathione synthetase does not appear to be ‘light-activated’ in isolated type A chloroplasts.  相似文献   

20.
Cytokinin-active ribonucleosides have been isolated from tRNA of whole spinach (Spinacia oleracea L.) leaves and isolated spinach chloroplasts. The tRNA from spinach leaf blades contained: 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine (cis and trans isomers), 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (cis and trans isomers). A method for isolation of large amounts of intact chloroplasts was developed and subsequently used for the isolation of chloroplast tRNA. The chloroplast tRNA contained 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (the cis isomer only). The structures of these compounds were assigned on the basis of their chromatographic properties and mass spectra of trimethylsilyl derivatives which were identical with those of the corresponding synthetic compounds. The results of this study indicate that ribosylzeatin was present in spinach leaf tRNA, but absent from the purified chloroplast tRNA preparation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号