首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Abstract

Lipase based formulations has been a rising interest to laundry detergent industry for their eco-friendly property over phosphate-based counterparts and compatibility with chemical detergents ingredients. A thermo-stable Anoxybacillus sp. ARS-1 isolated from Taptapani Hotspring, India was characterized for optimum lipase production employing statistical model central composite design (CCD) under four independent variables (temperature, pH, % moisture and bio-surfactant) by solid substrate fermentation (SSF) using mustard cake. The output was utilized to find the effect of parameters and their interaction employing response surface methodology (RSM). A quadratic regression with R2?=?0.955 established the model to be statically best fitting and a predicted highest lipase production of 29.4?IU/g at an optimum temperature of 57.5?°C, pH 8.31, moisture 50% and 1.2?mg of bio-surfactant. Experimental production of 30.3?IU/g lipase at above conditions validated the fitness of model. Anoxybacillus sp. ARS-1 produced lipase was found to resist almost all chemical detergents as well as common laundry detergent, proving it to be a prospective additive for incorporation.  相似文献   

2.
Rhizopus sp.PW358菌脂肪酶固态发酵生产   总被引:7,自引:0,他引:7  
研究了Rhizopus sp.PW358菌的固态生长和产脂肪酶条件。结果表明:黄豆饼粉为培养基的基本成分,用来生产脂肪酶。培养基中可加入淀粉和蛋白胨作为碳源和源,有利于脂肪酶的合成,培养基的含水量以及金属离子Ca^2 ,Mg^2 的浓度也影响Rhizopus sp.PW358菌和脂肪酶 产生。在优化条件下,12g豆粉中含1.0g淀粉及0.5g蛋白胨、15ml营养盐中Ca^2 ,Mg^2 离子浓度分别为8.0和4.0g/L,培养基含水量为55.6%,在接种后培养48h,酶活力可达最大值320IU/g干培养基。脂肪酶的基本性质研究表明,酶的最适反应温度和PH分别为35℃和7.0,酶的半失活温度为53.5℃,不同的PH环境中,30℃保温1h后酶在PH6.5-8.5范围内较为稳定。  相似文献   

3.
4.
An alkalophilic Streptomyces sp. RCK-SC, which produced a thermostable alkaline pectinase, was isolated from soil samples. Pectinase production at 45 °C in shaking conditions (200 rev min−1) was optimal (76,000 IU l−1) when a combination of glucose (0.25% w/v) and citrus pectin (0.25% w/v) was added along with urea (0.25% w/v) in the basal medium devoid of yeast extract and peptone. All the tested amino acids and vitamins greatly induced pectinase production and increased the specific productivity of pectinase up to 550%. In an immobilized cell system containing polyurethane foam (PUF), the pectinase production was enhanced by 32% (101,000 IU l−1) compared to shake flask cultures. In solid-state cultivation (SSC) conditions, using wheat bran as solid substrate, pectinase yield of 4857 IU g−1 dry substrate was obtained at substrate-to-moisture ratio of 1:5 after 72 h of incubation. The partially purified pectinase was optimally active at 60 °C and retained 80% of its activity at 50 °C after 2 h of incubation. The half life of pectinase was 3 h at 70 °C. Pectinase was stable at alkaline pH ranging from 6.0 to 9.0 for more than 8 h at room temperature retaining more than 50% of its activity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Intravascular thrombosis is a major cardiovascular complication responsible for high mortality worldwide. Existing thrombolytic agents are expensive and have various side effects. As a consequence, researchers continue to search for better thrombolytic agents. Fibrinolytic proteases especially those of microbial origin are considered as potential therapeutic candidates for thrombosis. The current study reports fibrinolytic protease from a bacterial isolate Stenotrophomonas sp. KG-16-3, as it exhibits high fibrinolytic activity on fibrin agarose plate. Studies on fibrinolytic protease from Stenotrophomonas sp. are lacking. So, a detailed study was conducted for the production and purification of fibrinolytic protease. Optimizing process parameters using the Design of Experiments method enhanced the yield by 1.5-fold. The fibrinolytic enzyme was purified by ammonium sulfate precipitation, ion-exchange and gel-filtration chromatography resulting in 7.1-fold purification and 16.7% yield with specific activity of 383.8?U/mg. The purified enzyme exhibited higher fibrinolytic activity than plasmin and had a molecular weight of 39?kDa. Optimal activity of the enzyme was observed at 50?°C and pH 10. The enzyme exhibited stability up to 60?°C, over pH 7–10 and in the presence of different metal ions and solvents. The activity of the enzyme was significantly reduced in the presence of phenylmethyl sulfonyl fluoride, iodoacetic acid and 1,10-phenanthroline, suggesting that the enzyme belonged to the serine–cysteine metalloprotease category. The present study is the first ever report on the Design of Experiments based optimization of fermentation conditions for the production of fibrinolytic protease from Stenotrophomonas sp.  相似文献   

6.
7.
以啤酒酵母为指示菌,研究了海洋放线菌YT-10产抗菌物质的发酵条件。利用Plackett-Burman设计对影响YT-10产抗菌物质的因素的效应进行评价,筛选出具有显著效应的三个因素:葡萄糖、黄豆粉和氯化钠。利用响应面中心旋转组合设计优化三个显著因素,确定了葡萄糖,黄豆粉和氯化钠浓度分别为0.7%,1.3%,0.952%。优化后抑菌圈直径可达32.6mm,比原来增加了34.7%。  相似文献   

8.
The production of biofuel using thermostable bacterial lipase from hot spring bacteria out of low-cost agricultural residue olive oil cake is reported in the present paper. Using a lipase enzyme from Bacillus licheniformis, a 66.5% yield of methyl esters was obtained. Optimum parameters were determined, with maximum production of lipase at a pH of 8.2, temperature 50.8°C, moisture content of 55.7%, and biosurfactant content of 1.693?mg. The contour plots and 3D surface responses depict the significant interaction of pH and moisture content with biosurfactant during lipase production. Chromatographic analysis of the lipase transesterification product was methyl esters, from kitchen waste oil under optimized conditions, generated methyl palmitate, methyl stearate, methyl oleate, and methyl linoleate.  相似文献   

9.
Aims:  Statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1.
Methods and Results:  Urea, K2HPO4, chitin and yeast extract were identified as significant components influencing chitinase production by Paenibacillus sp. D1 using Plackett–Burman method. Response surface methodology (central composite design) was applied for further optimization. The concentrations of medium components for improved chitinase production were as follows (g l−1): urea, 0·33; K2HPO4, 1·17; MgSO4, 0·3; yeast extract, 0·65 and chitin, 3·75. This statistical optimization approach led to the production of 93·2 ± 0·58 U ml−1 of chitinase.
Conclusions:  The important factors controlling the production of chitinase by Paenibacillus sp. D1 were identified as urea, K2HPO4, chitin and yeast extract. Statistical approach was found to be very effective in optimizing the medium components in manageable number of experimental runs with overall 2·56-fold increase in chitinase production.
Significance and Impact of the Study:  The present investigation provides a report on statistical optimization of medium components for improved chitinase production by Paenibacillus sp. D1. Paenibacillus species are gram-positive, spore-forming bacteria with several PGPR and biocontrol potentials. However, only few reports concerning mycolytic enzyme production especially chitinases are available. Chitinase produced by Paenibacillus sp. D1 represents new source for biotechnological and agricultural use.  相似文献   

10.
Aims: To screen and identify biosurfactant producers from petroleum‐contaminated soil; to use response surface methodology (RSM) for medium optimization to enhance biosurfactant production; and to study the properties of the newly obtained biosurfactant towards pH, temperature and salinity. Methods and Results: We successfully isolated three biosurfactant producers from petroleum‐contaminated soil and identified them through 16S rRNA sequence analysis, which exhibit the highest similarities to Acinetobacter beijerinckii (100%), Kocuria marina (99%) and Kineococcus marinus (99%), respectively. A quadratic response model was constructed through RSM designs, leading to a 57·5% increase of the growth‐associated biosurfactant production by Acinetobacter sp. YC‐X 2 with an optimized medium: beef extract 3·12 g l?1; peptone 20·87 g l?1; NaCl 1·04 g l?1; and n‐hexadecane 1·86 g l?1. Biosurfactant produced by Acinetobacter sp. YC‐X 2 retained its properties during exposure to a wide range of pH values (5–11), high temperatures (up to 121°C) and high salinities [up to 18% (w/v) Na+ and Ca2+], which was more sensitive to Ca2+ than Na+. Conclusions: Two novel biosurfactant producers were isolated from petroleum‐contaminated soil. Biosurfactant from Acinetobacter sp. YC‐X 2 has good properties to a wide range of pH, high temperature and high salinity, and its production was optimized successfully through RSM. Significance and Impact of the Study: The fact, an increasing demand of high‐quality surfactants and the lack of cost‐competitive bioprocesses of biosurfactants for commercial utilization, motivates researchers to develop cost‐effective strategies for biosurfactant production through isolating new biosurfactant producers with special surface‐active properties and optimizing their cultural conditions. Two novel biosurfactant producers in this study will widen our knowledge about this kind of micro‐organism. This work is the first application of RSM designs for cultural optimization of biosurfactant produced by Acinetobacter genus and the first report that biosurfactant may be more sensitive to Ca2+ than Na+.  相似文献   

11.
李鹏  陈秀珍  庄文颖 《菌物学报》2021,40(4):743-758
木霉是重要的产纤维素酶真菌,在其可利用性评价筛选过程中,获得了一株在实验室条件下高产纤维素酶的拟康宁木霉菌株8985.采用响应面法对8985产纤维素酶的固态发酵条件进行了研究,以滤纸酶活为响应值,通过Plackett-Burman设计对11个因素进行了筛选,包括温度、湿度、发酵时间、K2HPO4、(NH4)2SO4、T...  相似文献   

12.
13.
Mycophenolic acid (MPA) can be produced in solid state fermentation. An isolate of Penicillium brevi-compactum ATCC 16024 grown on moist wheat bran produced a titre of 425 mg per kg of wheat bran. Central composite rotatable design and response surface methodology were employed to derive a statistical model for media optimization towards production of mycophenolic acid. Five levels with a five factorial design were adopted. The correlation coefficient was 0.82, ensuring a satisfactory adjustment of the model to the experimental values. This statistical design was very effective in improving the titre of mycophenolic acid up to 3286 mg per kg of wheat bran. Received 24 July 1998/ Accepted in revised form 4 December 1998  相似文献   

14.
Polyhydroxyalkanoate (PHA) is a promising polymer for various biomedical applications. There is a high need to improve the production rate to achieve end use. When a cost-effective production was carried out with cheaper agricultural residues like molasses, traces of toxins were incorporated into the polymer, which makes it unfit for biomedical applications. On the other hand, there is an increase in the popularity of using chemically defined media for the production of compounds with biomedical applications. However, these media do not exhibit favorable characteristics such as efficient utilization at large scale compared to complex media. This article aims to determine the specific nutritional requirement of Pseudomonas sp. MNNG-S for efficient production of polyhydroxyalkanoate. Response surface methodology (RSM) was used in this study to statistically design for PHA production based on the interactive effect of five significant variables (sucrose; potassium dihydrogen phosphate; ammonium sulfate; magnesium sulfate; trace elements). The interactive effects of sucrose with ammonium sulfate, ammonium sulfate with combined potassium phosphate, and trace element with magnesium sulfate were found to be significant (p??1 to 4.56?g?L?1).  相似文献   

15.
The objective of this work is to enhance the production of lovastatin using Monascus purpureus MTCC 369 in mixed substrate solid state fermentation using various solid substrates and to optimize the combination of the solid substrates by response surface methodology. Solid state fermentation was conducted in a 250 mL Erlenmeyer flask at 30°C for 14 days with initial moisture content of 40% and inoculum size of 10% active culture. Barley, long grain rice and sago starch were found to be the suitable substrates producing maximum lovastatin of 193.7 mg, 190.2 mg and 180.9 mg/g of dry solids. These substrates were further used in various combinations as designed by the central composite design for enhancing the lovastatin production using Monascus purpureus. To the best of our knowledge this is the first report on the production of lovastatin using a mixed substrate solid state fermentation using Monascus purpureus.  相似文献   

16.
Nigerloxin, a new and potent lipoxygenase inhibitor, was discovered in our laboratory through solid-state fermentation of wheat bran by Aspergillus niger V. Teigh (MTCC-5166). The aim of this study is to investigate the possibility of using different agro-industrial residues as nutritional supplements along with wheat bran to enhance the production of nigerloxin. Nigerloxin produced by SSF was quantified spectrophotometrically at 292 nm. The results indicate that the inhibitor production was influenced by the type of solid substrate supplemented, moisture content, pH and size of the inoculum. Individually optimized supplements were tested in different combinations to determine their effects on nigerloxin production. A twofold increase in the production of nigerloxin (4.9 ± 0.3 mg gds−1) was achieved by supplementing wheat bran with 10% w/w sweet lemon peel and 5% v/w methanol at optimized process parameters, that is, an initial moisture content of 65% v/w and incubation period of 6 days with an initial inoculum size of 2 ml (8 × 105 spores gds−1). Nigerloxin production was stable between pH of 4 and 5.  相似文献   

17.
19,20-Epoxy-cytochalasin Q (B5A) is a cytochalasin with a wide range of biological activities, which can be produced by Xylaria sp. sof11, a strain isolated from the seafloor of the northern South China Sea. Since the low titer of B5A has greatly limited its further studies, we have systematically conducted the fermentative optimization for B5A production in this article. The effects of major medium components, including the carbon and organic nitrogen sources, as well as of the concentration of sea salt, were respectively investigated through single-factor experiments. As a result, sucrose and fish meal were determined to be the key factors affecting the production of B5A. Then three important variables, sucrose, fish meal, and filling volume, were screened out by the Plackett–Burman (PB) design. The optimal level of these variables was further confirmed by response surface analysis. The final formulated medium was set as 35.2 g/L sucrose and 18.0 g/L fish meal, with filling volume of 34.6 mL, which could afford 440.3 mg/L production of B5A, approximately 4.4-fold higher than that in the original medium. The significantly improved productivity of B5A will facilitate the subsequent mechanistic and clinical studies of B5A.  相似文献   

18.
Burkholderia sp.脂肪酶具有较高的有机溶剂耐受性和转酯活性,广泛应用于手性化合物的拆分。本研究利用统计学方法对一株具有有机溶剂极端耐受性的脂肪酶高产茵株Burkholderia sp.ZYB002在摇瓶培养条件下产脂肪酶条件进行了优化。通过单因素实验,首先确定了最适碳源、氮源、诱导荆等。以Plackett—Burrman设计筛选影响Burkholderia sp.ZYB002产酶的主要因素,通过最陡爬坡实验和响应面分析法确定产酶最适条件。K2HP04、大豆油乳化液和起始RH确定为影响菌株产酶的3个主效因素。最佳产酶条件为:糊精0.3%(W/V),牛肉膏2.0%(W/V),MgSO4.7H2O.075%(W/V),K2HPO4 0.14%(W/V),大豆油乳化液4.89%(V/V),pH8.11,玻璃珠10颗/瓶,接种量2.0%(V/V),30℃,250r/min,发酵时间22h。在此条件下,发酵液脂肪酶酶活最高达45.6U/mL,较发酵基本培养基发酵液的脂肪酶酶活提高了3.44倍。  相似文献   

19.
链霉菌发酵麦草产木聚糖酶的试验研究   总被引:8,自引:0,他引:8  
通过正交设计试验 ,找出利用链霉菌和麦草基质发酵生产木聚糖酶的试验条件。培养基 (g/L) :麦草粉 ,4 5 ;(NH4 ) 2 SO4 ,7.5 ;酵母膏 ,8;K2 HPO4 ·3H2 O ,1;MgSO4 ·7H2 O ,0 .5 ;NaCl,0 .3。接种量为 5 .0× 10 8个孢子 / 5 0mL培养基 ,振荡培养 (12 0r/min) 5d  相似文献   

20.
Statistics-based experimental design was used to investigate the effect of medium components (starch, peptone, ammonium sulfate, yeast extract, and CaCl2.2H2O) on hen's egg white lysozyme production by Aspergillus niger HEWL WT-13-16. A 2(5-1) fractional factorial design augmented with center points revealed that peptone, starch, and ammonium sulfate were the most significant factors, whereas the other factors were not important within the levels tested. The method of steepest ascent was used to approach the proximity of optimum. This task was followed by a central composite design to develop a response surface for medium optimization. The optimum medium composition for lysozyme production was found to be: starch 34 g L-1, peptone 34 g L-1, ammonium sulfate 11.9 g L-1, yeast extract 0.5 g L-1, and CaCl2.2H2O 0.5 g L-1. This medium was projected to produce, theoretically, 212 mg L-1 lysozyme. Using this medium, an experimental maximum lysozyme concentration of 209+/-18 mg L-1 verified the applied methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号