首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cardiovascular effects of newly discovered peptide intermedin/adrenomedullin 2   总被引:10,自引:0,他引:10  
Pan CS  Yang JH  Cai DY  Zhao J  Gerns H  Yang J  Chang JK  Tang CS  Qi YF 《Peptides》2005,26(9):1640-1646
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CGRP). The present study aimed to investigate the cardiovascular effects of IMDs (IMD1-47 and IMD8-47) in rats. Intravenous administration of 150 nmol IMDs continuously decreased mean arterial pressure and inhibited cardiac function. Administration with IMDs decreased left ventricular end-systolic pressure (LVESP) and maximal rate of left-ventricle pressure development (+/-LVdp/dt(max)), and elevated left ventricular end-diastolic pressure (LVEDP). Changes with IMD1-47 treatment were close to that with IMD8-47 (P>0.05). Perfusion of isolated rat hearts in vitro with IMD8-47 (10(-8) and 10(-7)mol/L) resulted in lower LVSP, by 40 and 56% (P<0.01); lower +LVdp/dt (max), by 33 and 47% (P<0.01); lower -LVdp/dt(max), by 25 and 39% (P<0.01); but higher coronary perfusion flow (CPF), by 25% (P<0.05) and 33% (P<0.01), respectively, than controls. However, both IMD8-47 and IMD1-47 (from 10(-13) to 10(-7)mol/L) relaxed preconstricted aortic rings in a dose-dependent manner. Intravenous administration of IMD1-47 and IMD8-47 (10(-7)mol/L) in vivo increased the cyclic adenosine monophosphate (cAMP) content by 68 and 150% (both P<0.01), respectively, in myocardia and 320 and 281% (both P<0.01), respectively, in aortas, compared with controls. Perfusion of isolated hearts with IMD1-47 and IMD8-47 (10(-7)mol/L) enhanced cAMP content by 24% (P<0.05) and 73% (P<0.01), respectively, compared with controls. IMDs inhibited 3H-Leucine incorporation in cardiomyocytes in a concentration-dependent manner. IMD1-47 and IMD8-47 (10(-7) and 10(-8)mol/L) decreased 3H-Leucine incorporation by 12-25% (P<0.01) and 14-18% (P<0.01), respectively. IMD mRNA was detected in cultured neonatal cardiomyocytes and isoproterenol-induced hypertrophic myocardia but not normal myocardia of adult rats. These results suggest that IMD might be a regulatory factor for cardiovascular function and myocardial hypertrophy as a cardiovascular active peptide.  相似文献   

2.
Intermedin (IMD), also called adrenomedullin-2, is a 47-amino acid peptide from the calcitonin gene-related peptide (CGRP)/adrenomedullin family of peptides. Recent studies suggest that IMD may participate in the regulation of cardiovascular function and fluid and electrolyte homeostasis. To evaluate the role of IMD on cardiomyocyte contractile function, electrically paced murine ventricular myocytes were acutely exposed to IMD, and the following indexes were determined: peak shortening (PS), time to PS, time-to-90% relengthening, and maximal velocity of shortening and relengthening. Intracellular Ca(2+) was assessed using fura 2-AM fluorescent microscopy. Our results revealed that IMD (10 pM to 10 nM) significantly increased PS and maximal velocity of shortening and relengthening in ventricular myocytes, the maximal effect of which (approximately 46%) was somewhat comparable to those elicited by CGRP (1 nM) and adrenomedullin (100 nM). Exposure of IMD significantly shortened time-to-90% relengthening without affecting time to PS, similar to CGRP and adrenomedullin. IMD also enhanced intracellular Ca(2+) release, with a maximal increase of approximately 50%, and facilitated the intracellular Ca(2+) decay rate. The IMD-induced effects were abolished by the protein kinase C inhibitor chelerythrine (1 microM), downregulation of protein kinase C using phorbol 12-myristate 13-acetate (1 microM), and the protein kinase A inhibitor H89 (1 microM). Our data suggest that IMD acutely augments cardiomyocyte contractile function through, at least in part, a protein kinase C- and protein kinase A-dependent mechanism.  相似文献   

3.
Intermedin (IMD)/adrenomedullin-2 (AM2) is a novel peptide that was independently discovered by two groups. The 47-amino acid peptide is homologous to adrenomedullin (AM) and can activate both the AM and calcitonin gene-related peptide (CGRP) receptors. IMD should therefore have actions similar to those of AM and CGRP. Indeed, like AM and CGRP, intravenous administration of IMD decreased blood pressure in rats and mice. We demonstrate here that immunoreactive IMD is present in plasma as well as heart, lung, stomach, kidney, pituitary, and brain. Because IMD is present in brain and both AM and CGRP have potent central nervous system (CNS) effects, we examined the ability of IMD within brain to regulate blood pressure and ingestive behaviors. Administration of IMD into the lateral cerebroventricle of rats caused significant, long-lasting elevations in mean arterial pressure and heart rate. These elevations are similar to the effects of CGRP and significantly greater than the effects of AM. IMD-induced elevations in mean arterial pressure were inhibited by intravenous administration of phentolamine, indicating that IMD activates the sympathetic nervous system. Intracerebroventricular administration of IMD also inhibited food and water intake in sated and in food- and water-restricted animals. The effects on feeding are likely related to activation of the CGRP receptor and are independent of the effects on water intake, which are likely through the AM receptor. Our data indicate that IMD has potent actions within the CNS that may be a result of the combined activation of both AM and CGRP receptors.  相似文献   

4.
Calcitonin, calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), and amylin belong to a unique group of peptide hormones important for homeostasis in diverse tissues. Calcitonin is essential for calcium balance, whereas CGRP and ADM are important for neurotransmission and cardiovascular and respiratory regulation. Based on phylogenetic analysis, we identified intermedin as a novel member of the calcitonin/CGRP peptide family. Analysis of intermedin expression indicated that intermedin is expressed primarily in the pituitary and gastrointestinal tract. Intermedin increased cAMP production in SK-N-MC and L6 cells expressing endogenous CGRP receptors and competed with labeled CGRP for binding to its receptors in these cells. In addition, treatment of 293T cells expressing recombinant calcitonin receptor-like receptor (CRLR) and one of the three receptor activity-modifying proteins (RAMPs) showed that a CRLR/RAMP receptor complex is required for intermedin signaling. In contrast to CGRP and ADM, which exhibited a preferential stimulation of CRLR when co-expressed with RAMP1 and RAMP2 or RAMP3, respectively, intermedin represents a nonselective agonist for the RAMP coreceptors. In vivo studies demonstrated that intermedin treatment led to blood pressure reduction in both normal and spontaneously hypertensive rats via interactions with the CRLR/RAMP receptor complexes. Furthermore, in vivo treatment in mice with intermedin led to suppression of gastric emptying activity and food intake. Thus, identification of intermedin as a novel member of the calcitonin/CGRP peptide family capable of signaling through CRLR/RAMP receptor complexes provides an additional player in the regulation of peripheral tissues by CRLR and will allow development of new therapeutic agents for pathologies associated with diverse vascular and gastrointestinal disorders.  相似文献   

5.
Ren YS  Yang JH  Zhang J  Pan CS  Yang J  Zhao J  Pang YZ  Tang CS  Qi YF 《Peptides》2006,27(1):74-79
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CGRP) family identified from human and other vertebrate tissues. Preprointermedin can generate various mature peptides by proteolytic cleavage. Amino acid sequence analysis showed cleavage sites located between two basic amino acids at Arg93-Arg94 resulting in the production of prepro-IMD(95-147), namely IMD(1-53). The present study was designed to determine the effects of the IMD(1-53) fragment in the central nervous system (CNS) on mean arterial blood pressure and heart rate in normal rats and its possible mechanism. Rats were given doses of adrenomedullin (ADM) or IMD(1-53), intracerebroventricularly or intravenously, respectively, with continuous blood pressure and heart rate monitoring for 45min. Analysis with CGRP receptor antagonist CGRP(8-37), ADM receptor antagonist ADM(22-52), and anti-prepro-IMD antibody showed that 0.1, 0.5, and 1.0 nmol/kg IMD(1-53), caused a dose-dependent elevation in blood pressure, which was more prominent than the increase with equivalent IMD(1-47) or ADM. As well, IMD(1-53) caused a persistent increase in heart rate. The CNS action of IMD(1-53) could be blocked by ADM(22-52), CGRP(8-37), or prepro-IMD antibody. In contrast to the CNS action, intravenous administration of IMD(1-53) induced a depressor effect. These results suggest that IMD(1-53) is an important regulatory factor in mean arterial blood pressure and heart rate through its central and peripheral bioaction.  相似文献   

6.
Intermedin/adrenomedullin-2 (IMD/AM2) is a 47 amino acid peptide formed by enzymatic degradation of preprointermedin. The present study was undertaken to investigate the effects of rat IMD (rIMD) in the isolated buffer perfused rat lung (IBPR) under resting conditions and under conditions of elevated pulmonary vasoconstrictor tone (PVT). Under resting conditions in the IBPR, rIMD had little or no activity. When PVT was actively increased by infusion of U46619, bolus injection of IMD decreased pulmonary arterial pressure (PAP) in a dose-dependent manner. Since the pulmonary perfusion rate and left atrial pressure were constant, these reductions in PAP directly reflect reductions in pulmonary vascular resistance (PVR). The pulmonary vasodilator response to rIMD, when compared to calcitonin gene-related peptide (CGRP) on a molar basis, was greater at the lowest and midrange doses. The degree of inhibition by CGRP8-37 on pulmonary vasodilator response to rIMD was significantly less when compared to CGRP. Pretreatment with L-nitro-arginine-methyl ester (L-NAME), unlike meclofenamate and glybenclamide, significantly reduced the pulmonary vasodilator responses to rIMD. rIMD administration induced cross-tachyphylaxis to the pulmonary vasodilator response to CGRP whereas CGRP administration did not alter the ability of rIMD to dilate the IBPR. Pulmonary vasodilator responses to repeated injections of rIMD did not undergo tachyphylaxis. The present data demonstrate rIMD possesses direct vasodilator activity in the rat pulmonary vascular bed. The present data suggest activation of CGRP1 receptors and release of nitric oxide (NO*) mediate the pulmonary vasodilator response to rIMD whereas cyclooxygenase products and KATP channels do not contribute to the pulmonary vasodilator response to rIMD. The ability of rIMD to induce heterologous desensitization of CGRP1 receptor activation, to retain much of its pulmonary vasodilator activity after inhibition of CGRP1 receptors, and to lack homologous desensitization together suggests the pulmonary, unlike the systemic, vasodilator response to rIMD may depend on other vasodilator mechanisms including receptors in the calcitonin-receptor-like-receptor (CRLR) family.  相似文献   

7.
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CT/CGRP) family identified from human and other vertebrate tissues. Preprointermedin (preproIMD) can generate a 47 amino acid mature peptide (IMD(1-47)) and a shorter 40 amino acid one (IMD(8-47)) by proteolytic cleavage. Amino acid sequence analysis showed that cleavage sites are located between two basic amino acids at Arg93-Arg94, resulting in the production of preproIMD(95-147), namely IMD(1-53). The present study was designed to observe the effects of IMD(1-53) on cardiac function in ischemia/reperfusion (I/R) injury in isolated rat hearts. Perfusion with high-dose IMD(1-53) gave higher left ventricular systolic pressure (LVSP) and maximal rate of increase and decrease of left ventricle pressure (+/-LVdP/dt(max)), and coronary perfusion flow (CPF) than those of controls. Cardiac I/R induced a marked inhibition of cardiac function and myocardial injury. Reperfusion with IMD(1-53) significantly ameliorated the inhibited cardiac function and bradycardia induced by I/R. Compared with the I/R-treatment alone, IMD(1-53) reperfusion augmented CPF, LVSP, and maximal rate of increase and decrease of left ventricle pressure (+/-LVdP/dt(max)) and decreased LVDP. In addition, reperfusion with IMD(1-53)markedly attenuated the leakage of lactate dehydrogenase and malondialdehyde content in myocardia compared with I/R alone. Reperfusion with IMD(1-53)increased the content of cyclic adenosine monophosphate in comparison with I/R alone. Interestingly, the above IMD(1-53) effects are similar to those of adrenomedullin. These results suggest that IMD(1-53), like adrenomedullin, has cardioprotective effects against myocardial I/R injury.  相似文献   

8.
Yang JH  Qi YF  Jia YX  Pan CS  Zhao J  Yang J  Chang JK  Tang CS 《Peptides》2005,26(3):501-507
Intermedin (IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CT/CGRP) family identified from human and other vertebrate tissues. Preprointermedin can generate a 47-amino acid mature peptide (IMD(1-47)) and a shorter 40-amino acid one (IMD(8-47)) by proteolytic cleavage. The present study was designed to determine the protective effect of IMD on cardiac ischemia/reperfusion (I/R) injury and its possible mechanism. Isolated rat hearts were perfused on a Langendorff apparatus and subjected to 45-min global ischemia and 30-min reperfusion. Cardiac function was measured. The release of myocardial protein and lactate dehydrogenase (LDH) and the formation of malondialdehyde (MDA) were assayed. Myocardial cAMP content was determined by radioimmunoassay (RIA). Cardiac I/R induced a marked inhibition of cardiac function and myocardial injury. Reperfusion with IMD significantly attenuated the I/R injury. Compared with I/R alone, perfusion with 10(-8)mol/L IMD(1-47) and IMD(8-47) induced a 36% and 33% increase in Delta left ventricular pressure (DeltaLVP), 30% and 28% in maximal rate of increase of LV pressure (+LVdP/dt max), and 34% and 31% in maximal rate of decrease of LV pressure (-LVdP/dt max), respectively (all P<0.01) but an approximately 58% and 51% decrease in LV diastolic pressure, respectively (P<0.01). In addition, perfusion with IMD markedly attenuated the leakage of LDH, total protein and myoglobin from myocardia compared with I/R alone. The contents of ventricular myocardia cAMP after reperfusion with 10(-8)mol/L IMD(1-47) and IMD(8-47) were 130% and 91% higher, respectively, than that with I/R alone (all P<0.01). However, formations of myocardial MDA were 52% and 50% lower than that with I/R alone (all P<0.01), respectively. Interestingly, the above IMD effects were similar to those of adrenomedullin (10(-8)mol/L). These results suggest that IMD, like adrenomedullin, exerts cardio-protective effects against myocardial I/R injury.  相似文献   

9.
Calcitonin gene-related peptide and hypertension   总被引:7,自引:0,他引:7  
Deng PY  Li YJ 《Peptides》2005,26(9):1676-1685
Capsaicin-sensitive sensory nerves participate in the regulation of cardiovascular functions both in the normal state and the pathophysiology of hypertension through the actions of potent vasodilator neuropeptides, including calcitonin gene-related peptide (CGRP). CGRP, a very potent vasodilator, is the predominant neurotransmitter in capsaicin-sensitive sensory nerves, and plays an important role in the initiation, progression and maintenance of hypertension via: (1) the alterations in its synthesis and release and/or in vascular sensitivity response to it; (2) interactions with pro-hypertensive systems, including renin-angiotensin-aldosterone system, sympathetic nervous system and endothelin system; and (3) anti-hypertrophy and anti-proliferation of vascular smooth muscle cells. The decrease in CGRP synthesis and release contributes to the elevated blood pressure, as shown in the spontaneously hypertensive rats, alpha-CGRP knockout mice, Dahl-salt or phenol-induced hypertensive rats. In contrast, the increase in CGRP levels or the enhancement of vascular sensitivity response to CGRP plays a beneficial compensatory depressor role in the development of hypertension, as shown in deoxycorticosterone-salt, sub-total nephrectomy-salt, N(omega)-nitro-L-arginine methyl ester or two-kidney, one-clip models of hypertension in rats. We found that rutaecarpine causes a sustained depressor action by stimulation of CGRP synthesis and release via activation of vanilloid receptor subtype 1 (VR1) in hypertensive rats, which reveals the therapeutic implications of VR1 agonists for treatment of hypertension.  相似文献   

10.
11.
12.
Intermedin (IMD) is a novel vasoactive peptide from the calcitonin gene-related peptide (CGRP) implicated in cardiac regulation, yet the contractile effects of IMD remain controversial, since previous studies in vivo and isolated cardiomyocytes documented contradictory results. We hypothesized cardiac endothelial cells involvement in IMD modulation of cardiac function as an explanation for these opposing observations. With this in mind, we investigated the direct action of increasing concentrations of IMD (10(-8) to 10(-6)M) on myocardial performance parameters in rat left ventricular (LV) papillary muscles with and without endocardial endothelium (EE) and in presence of receptor antagonists and intracellular pathways inhibitors. In LV papillary muscles with intact EE, IMD induced a concentration-dependent negative inotropic action (%decrease relative to baseline, at IMD concentration of 10(-6)M, active tension of 14 ± 4%, and maximum velocity of tension rise of 10 ± 4%). These effects were blunted by EE removal, AM receptor antagonist (AM(22-52)), and CGRP receptor antagonist (CGRP(8-37)). Additionally, nitric oxide (NO) synthase inhibition with N(G)-nitro-l-arginine (l-NAME) in muscles with and without EE and guanylyl cyclase inhibition with {1H-[1,2,4]oxadiazole-[4,4-a]-quinoxalin-1-one} not only blunted the negative inotropic action of IMD but also unmasked IMD-positive inotropic effect dependent on CGRP receptor PKA activation. Western blot quantification of phosphorylated cardiac troponin I (P-cTnI) in IMD-treated papillary muscles revealed a significant increase in P-cTnI when compared with untreated muscles, while in l-NAME-pretreated papillary muscles IMD failed to increase P-cTnI. Finally, we found that stimulation of both EE and microvascular endothelial cells with IMD significantly increased NO production by 40 ± 3 and 38 ± 3%, respectively, suggesting the role of cardiac endothelial cells in NO production upon IMD stimulation. Our findings establish IMD negative inotropic effect in isolated myocardium due to NO/cGMP pathway activation with concomitant thin myofilament desensitization by increase in cTnI phosphorylation and provide a coherent explanation for the previously reported contradictory results.  相似文献   

13.
Adrenomedullin2/intermedin (AM2/IMD) is a novel member of the calcitonin/calcitonin gene-related peptide (CGRP) family. In the present study, we developed a specific radioimmunoassay of human AM2/IMD. Expression of AM2/IMD was studied in the human brain, pituitary, heart and kidney obtained at autopsy by radioimmunoassay and immunocytochemistry. Immunoreactive-AM2/IMD was detected by radioimmunoassay in human brains (range; 0.163-1.495 pmol/g wet weight), pituitaries (4.46+/-0.689 pmol/g wet weight, mean+/-S.E.M, n=3), left ventricles of hearts (0.251+/-0.0321 pmol/g wet weight, n=4), kidneys (3.49+/-1.18 pmol/g wet weight, n=5), and plasma obtained at healthy subjects (24.7+/-1.78 pmol/l, n=3). Reverse-phase high performance liquid chromatography showed that immunoreactive-AM2/IMD in human brain, kidney and plasma extracts were eluted in the position of authentic AM2/IMD. Additional peaks eluted earlier were found in the brain tissue and plasma. Immunocytochemistry showed that immunoreactive-AM2/IMD was localized in paraventricular and supraoptic nuclei of hypothalamus, anterior and posterior lobes of pituitary, cardiomyocytes, pericardial adipocytes, vascular endothelial cells of pericardial veins, and vascular smooth muscle cells of coronary arteries and renal arterioles as well as in renal tubular cells. The present study has shown expression of AM2/IMD in various types of cells in the central nervous system and the cardiovascular system, and suggested possible (patho)physiological roles of AM2/IMD in these systems.  相似文献   

14.
15.
降钙素基因相关肽家族是一类多功能的激素家族 ,参与人体的多种生物学功能 ,与多种疾病有关。降钙素基因相关肽受体包括降钙素受体 (CTR)和降钙素受体样受体 (CRLR) ,CTR可以独自与降钙素结合 ,而CRLR必须与一组称作受体活性修饰蛋白 (RAMPs)的蛋白质共同作用才能发挥生物学功能。综述CTR的研究概况及CRLR与RAMPs相互作用的机制和表达调控 ,以期为人们设计新型药物提供参考。  相似文献   

16.
Recent studies have provided evidence for a dense localization of calcitonin gene-related peptide (CGRP) and its receptors within the central amygdaloid nucleus (Ce) in rat brain. Since this nucleus has been thought to play a role in central cardiovascular regulation, the present study examined the cardiovascular effects subsequent to the microinjection of CGRP into the Ce. Doses of 50-500 pmol of CGRP produced a significant elevation of 11-15% in systolic, diastolic and mean arterial pressures. Heart rate was significantly elevated by 16-18% by these doses of CGRP. The time course of the effects of CGRP revealed that onset of action occurred after 15-20 min, peak effects were seen at approximately 30-40 min after onset and the effects of the peptide usually lasted for at least 2 hr, after which time BP and HR values returned to baseline. The present study demonstrates that CGRP produces significant increases in both BP and HR when pmol doses of the peptide are injected into the Ce. It is suggested that in the Ce, CGRP plays a neuromodulatory role in cardiovascular function.  相似文献   

17.
18.

Background and Aim

Intermedin (IMD) is a member of calcitonin/calcitonin gene-related peptide (CGRP) family together with adrenomedullin (AM) and amylin. It has a wide distribution in the central nervous system (CNS) especially in hypothalamic paraventricular nucleus (PVN). Cardiac sympathetic afferent reflex (CSAR) is enhanced in chronic heart failure (CHF) rats. The aim of this study is to determine the effect of IMD in the PVN on CSAR and its related mechanisms in CHF rats.

Methodology/Principal Findings

Rats were subjected to left descending coronary artery ligation to induce CHF or sham-operation (Sham). Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were recorded. CSAR was evaluated by the RSNA and MAP responses to epicardial application of capsaicin. Acute experiments were carried out 8 weeks after coronary ligation or sham surgery under anesthesia. IMD and angiotensin II (Ang II) levels in the PVN were up-regulated in CHF rats. Bilateral PVN microinjection of IMD caused greater decreases in CSAR and the baseline RSNA and MAP in CHF rats than those in Sham rats. The decrease of CSAR caused by IMD was prevented by pretreatment with AM receptor antagonist AM22-52, but not CGRP receptor antagonist CGRP8-37. Ang II in the PVN significantly enhanced CSAR and superoxide anions level, which was inhibited by PVN pretreatment with IMD or tempol (a superoxide anions scavenger) in Sham and CHF rats.

Conclusion

IMD in the PVN inhibits CSAR via AM receptor, and attenuates the effects of Ang II on CSAR and superoxide anions level in CHF rats. PVN superoxide anions involve in the effect of IMD on attenuating Ang II-induced CSAR response.  相似文献   

19.
We previously described the protection by calcitonin gene-related peptide (CGRP) against hypoxic pulmonary hypertension. Here, we examine the roles of its putative receptor RDC-1 and receptor activity-modifying protein (RAMP) 1 in mediating this protection by selectively inhibiting their synthesis. RAMP1 is an accessory protein for another putative CGRP receptor, calcitonin receptor-like receptor. Antisense oligodeoxyribonucleotides (ASODNs, 5 mg.kg-1.day-1 or 5 and 10 mg.kg-1.day-1 for RDC-1) targeting RAMP1 and RDC-1 mRNAs were chronically infused to the pulmonary circulation of male Sprague-Dawley rats during 7 days of normoxia or hypobaric hypoxia (380 mmHg), and alpha-CGRP ASODN was used as a technical control. CGRP, RAMP1, and RDC-1 ASODNs significantly elevated pulmonary artery pressure (PPA) in chronic hypoxic rats compared with hypoxic mismatched ASODN (MMODN) and saline vehicle controls. CGRP and RAMP1 ASODNs raised PPA in normoxic rats briefly exposed to 10% O2 above MMODN and saline controls. Moreover, normoxic rats treated with CGRP ASODN had higher basal pulmonary vascular tone compared with controls. These data confirm the protective role of CGRP in the pulmonary circulation and suggest that endogenous RAMP1 and RDC-1 are essential in regulation of PPA in hypoxia. This is the first in vivo evidence supporting RDC-1 and RAMP1 as functional CGRP receptor and receptor component.  相似文献   

20.
Calcitonin Gene-Related Peptide (CGRP), a 37 amino acid peptide identified as the alternately spliced gene product of calcitonin gene, is a sensory neuropeptide with potent cardiovascular effects. CGRP is distributed throughout the central and peripheral nervous systems and possesses diverse biological actions. CGRP has been suggested to play a role in diseases such as migraine, diabetes, pain, and inflammation. Two forms of CGRP (alpha and beta) that differ in three amino acids have been identified and are encoded by different genes. Based on the differential biological activities of various CGRP analogs, the CGRP receptors have been classified into CGRP1 and CGRP2. Structure-activity studies of CGRP analogs showed that the C- and N-terminal regions of the peptide interact independently with their receptors. While C-terminal peptide, CGRP (8-37) behaves as a CGRP1 receptor antagonist, N-terminal peptide CGRP (1-12) behaves as a weak agonist. Structural modifications of CGRP(28-37) have yielded micromolar to nanomolar affinity ligands. CGRP receptor belongs to the calcitonin receptor like receptor (CRLR) family of G-protein-coupled receptors and has been shown to require a single transmembrane domain protein called receptor activity modifying protein-1 (RAMP1) for its functional expression as well as activity. Human, rat, and porcine CRLRs have been cloned and characterized. Currently, the major focus is on the identification of potent and specific nonpeptide antagonists for this receptor in order to understand the physiological and pathophysiological role of this peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号