首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azospirillum spp. were shown to utilize both straw and xylan, a major component of straw, for growth with an adequate combined N supply and also under N-limiting conditions. For most strains examined, a semisolid agar medium was satisfactory, but several strains appeared to be capable of slow metabolism of the agar. Subsequently, experiments were done with acid-washed sand supplemented with various carbon sources. In these experiments, authenticated laboratory strains, and all 16 recent field isolates from straw-amended soils, of both A. brasilense and A. lipoferum possessed the ability to utilize straw and xylan as energy sources for nitrogen fixation. Neither carboxymethyl cellulose nor cellulose was utilized. The strains and isolates differed in their abilities to utilize xylan and straw and in the efficiency of nitrogenase activity (CO2/C2H2 ratio). Reasonable levels of activity could be maintained for at least 14 days in the sand cultures. Nitrogenase activity (acetylene reduction) was confirmed by 15N2 incorporation. The level of nitrogenase activity observed was dependent on the time of the addition of acetylene to the culture vessels.  相似文献   

2.
Bacillus azotofixans is a recently described species capable of fixing molecular nitrogen efficiently.Ecological studies performed in monoxenic wheat cultures, both in 0.7% agar and in vermiculite-sand mixture, showed that no acetylene reduction occurred and that this bacteria did not grow when supplied only with the wheat plant root exudates. However, after glucose addition to the 0.7% agar cultures, acetylene reduction ability (ARA) was detected. Comparing ARA for media with glucose both with and without plants, it was observed that the plants supply some component leading to the increase of the nitrogenase activity, since the ARA doubled in the samples containing plants.In wheat straw cultures a fast growth of the bacteria was observed in the first 24 hours after inoculation, but no acetylene reduction was detected. After glucose addition to the media with and without straw, nitrogenase activity was detected.  相似文献   

3.

Objectives

To improve H2 production, the green algae Chlamydomonas reinhardtii cc849 was co-cultured with Azotobacter chroococcum.

Results

The maximum H2 production of the co-culture was 350% greater than that of the pure algal cultures under optimal H2 production conditions. The maximum growth and the respiratory rate of the co-cultures were about 320 and 300% of the controls, and the dissolved O2 of co-cultures was decreased 74%. Furthermore, the in vitro maximum hydrogenase activity of the co-culture was 250% greater than that of the control, and the in vivo maximum hydrogenase activity of the co-culture was 1.4-fold greater than that of the control. In addition, the maximum starch content of co-culture was 1400% that of the control.

Conclusions

Azotobacter chroococcum improved the H2 production of the co-cultures by decreasing the O2 content and increasing the growth and starch content of the algae and the hydrogenase activity of the co-cultures relative to those of pure algal cultures.
  相似文献   

4.
Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 109 cells per g of substrate, were evident after 4 and 5 days of incubation at 30°C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO2 production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an initial increase in cell numbers (107 cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 109 cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixed culture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relationship of cells from the two species facilitated the mutually beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation.  相似文献   

5.
Mixed cultures of Cellulomonas gelida plus Azospirillum lipoferum or Azospirillum brasilense and C. gelida plus Bacillus macerans were shown to degrade cellulose and straw and to utilize the energy-yielding products to fix atmospheric nitrogen. This cooperative process was followed over 30 days in sand-based cultures in which the breakdown of 20% of the cellulose and 28 to 30% of the straw resulted in the fixation of 12 to 14.6 mg of N per g of cellulose and 17 to 19 mg of N per g of g straw consumed. Cellulomonas species have certain advantages over aerobic cellulose-degrading fungi in being able to degrade cellulose at oxygen concentrations as low as 1% O2 (vol/vol) which would allow a close association between cellulose-degrading and microaerobic diazotrophic microorganisms. Cultures inoculated with initially different proportions of A. brasilense and C. gelida all reached a stable ratio of approximately 1 Azospirillum/3 Cellulomonas cells.  相似文献   

6.
White rot fungi (Coriolus hirsutus, Coriolus zonatus, and Cerrena maxima from the collection of the Komarov Botanical Institute of the Russian Academy of Sciences) and filamentous fungi (Mycelia sterilia INBI 2-26 and Trichoderma reesei 6/16) were grown on oat straw-based liquid and solid media, as well as in a bench-scale reactor, either individually or as co-cultures. All fungi grew well on solid agar medium supplemented with powdered oat straw as the sole carbon source. Under these conditions, the mould Trichoderma reesei fully suppressed the growth of all basidiomycetes studied; conversely, Mycelia sterilia neither affected the development of any of the cultures, nor did it show any substantial susceptibility to suppression by their presence. Pure solid cultures of basidiomycetes, as well as the co-culture of Coriolus hirsutus and Cerrena maxima caused a notable bleaching of the oat straw during its consumption. When grown on the surface of oat straw-based liquid medium, the basidiomycetes consumed up to 40% polysaccharides without measurable lignin degradation (a concomitant process). Under these conditions, Mycelia sterilia decomposed no more than 25% lignin in 60 days, but this was observed only after polysaccharide exhaustion and biomass accumulation. In contrast, during solid state straw fermentation, white rot fungi consumed up to 75% cellulose and 55% lignin in 83 days (C. zonarus), whereas the corresponding consumption levels for co-cultures of Mycelia sterilia and Trichoderma reesei equaled 70 and 45%, respectively (total loss of dry weight ranged from 55 to 60%). Carbon dioxide-monitored solid-state fermentation of oat straw by the co-culture of filamentous fungi was successfully performed in an aerated bench-scale reactor.  相似文献   

7.
Growth and nitrogenase activity were studied in cultures ofAzotobacter vinelandii growing with dinitrogen, ammonium sulfate, aspartic acid or yeast extract. Nitrogenase activity was measured by means of the C2H2 reduction test.In the presence of ammonium sulfate nitrogenase is completely repressed. After exhaustion of ammonia its activity is restored following a diauxic lag period of 30 min. With aspartic acid nitrogenase activity is partially repressed, and growth yield is higher than in the culture growing with N2 only. This is due to simultaneous use of dinitrogen and aspartate. Fluctuations of nitrogenase activity occurring during exponential growth and the mechanism of their regulation are discussed.Abbreviations NA nitrogenase activity - BNF Burk's nitrogen free medium  相似文献   

8.
Production and Degradation of Oxalic Acid by Brown Rot Fungi   总被引:4,自引:3,他引:1       下载免费PDF全文
Our results show that all of the brown rot fungi tested produce oxalic acid in liquid as well as in semisolid cultures. Gloeophyllum trabeum, which accumulates the lowest amount of oxalic acid during decay of pine holocellulose, showed the highest polysaccharide-depolymerizing activity. Semisolid cultures inoculated with this fungus rapidly converted 14C-labeled oxalic acid to CO2 during cellulose depolymerization. The other brown rot fungi also oxidized 14C-labeled oxalic acid, although less rapidly. In contrast, semisolid cultures inoculated with the white rot fungus Coriolus versicolor did not significantly catabolize the acid and did not depolymerize the holocellulose during decay. Semisolid cultures of G. trabeum amended with desferrioxamine, a specific iron-chelating agent, were unable to lower the degree of polymerization of cellulose or to oxidize 14C-labeled oxalic acid to the extent or at the rate that control cultures did. These results suggest that both iron and oxalic acid are involved in cellulose depolymerization by brown rot fungi.  相似文献   

9.
In a study during the 1970s co-variation of nitrogenase activity and methane formation associated with Sphagnum riparium was observed. This was suggested as evidence for a possible mechanism of hydrogen transfer from cyanobacteria to methanogens. We show experimentally that such a pathway is feasible. In a series of laboratory experiments, using a hydrogenase deficient strain of the heterocystous cyanobacterium Nostoc punctiforme and the hydrogenotrophic methanogen Methanospirillum hungateii in co-cultures, increasing light intensities resulted in elevated nitrogenase activity and methane production. The increase in methane production can be directly deduced from the nitrogenase activity of the N. punctiforme based on hydrogen balance calculations. These experimental results clearly suggest the possible existence of a novel photosynthetically regulated pathway for methane formation.  相似文献   

10.
Encystment of Azotobacter nigricans was induced by its diazotrophic cultivation on kerosene. Its growth and nitrogenase activity were affected by kerosene in comparison to cultures grown on sucrose. Electron microscopy of vegetative cells showed that when nitrogenase activity was higher and the poly-β-hydroxybutyrate granules were not present to a significant extent, peripheral bodies were abundant. After 8 days of culture on kerosene, the presence of cysts with intracellular bunches of poly-β-hydroxybutyrate granules was observed. Germination of cysts bears germinating multicelled yet unbroken capsule cysts with up to three cells inside. This is the first report of encystment induction of Azotobacter species grown on kerosene.  相似文献   

11.
In samples from nitrogen-fixing continuous cultures of strain CB756 of the cowpea type rhizobia (Rhizobium sp.), newly fixed NH4+ is in equilibrium with the medium, from where it is assimilated by the glutamine synthetase/glutamate synthase pathway. In samples from steady state cultures with different degrees of oxygen-limitation, nitrogenase activity was positively correlated with the biosynthetic activity of glutamine synthetase in cell free extracts. Also, activities in biosynthetic assays were positively correlated with activities in γ-glutamyl transferase assays containing 60 mM Mg2+. Relative adenylylation of glutamine synthetase was conveniently measured in cell free extracts as the ratio of γ-glutamyl transferase activities without and with addition of 60 mM Mg2+.Automatic control of oxygen supply was used to facilitate the study of transitions between steady-state continuous cultures with high and low nitrogenase activities. Adenylylation of glutamine synthetase and repression of nitrogenase activity in the presence of excess NH4+, were masked when oxygen strongly limited culture yield. Partial relief of the limitation in cultures supplied with 10 mM NH4+ produced early decline in nitrogenase activity and increase in relative adenylylation of glutamine synthetase. Decreased oxygen supply produced a rapid decline in relative adenylylation, followed by increased nitrogenase activity, supporting the concept that control of nitrogenase synthesis is modulated by glutamine synthetase adenylylation in these bacteria.  相似文献   

12.
A method is described which allows the quantitative determination of small ammonia concentrations in the culture of nitrogen-fixing microorganisms. With this method the ammonia concentration range was estimated in which repression of nitrogenase synthesis in Azotobacter vinelandii occurs. Both in batch and continuous cultures there was no repression below 10 μM, whereas nitrogenase synthesis stopped completely if the ammonia concentration in the medium exceeded 25 μM.  相似文献   

13.
A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CSI-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity (C2H2 reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed.  相似文献   

14.
Effects of prolonged darkness on nitrogenase activity in vivo, nitrogenase activity in vitro, and the amounts of nitrogenase proteins were studied in symbiotic Frankia. Plants of Alnus incana (L.) Moench in symbiosis with a local source of Frankia were grown for 9 to 10 weeks in an 18/6 hour light/darkness cycle. After 12 hours of a light period, the plants were exposed to darkness for up to 40 hours. Nitrogenase activity (acetylene reduction activity) of intact plants was measured repeatedly. Frankia vesicle clusters were prepared from the nodules with an anaerobic homogenization and filtration technique and were used for measurements of in vitro nitrogenase activity and for measurements of the amounts of nitrogenase proteins on Western blots. Antisera made against dinitrogenase reductase (Fe-protein) of Rhodospirillum rubrum and against dinitrogenase (MoFe-protein) of Azotobacter vinelandii were used. Western blots were made transparent and nitrogenase proteins were quantified spectrophotometrically. Nitrogenase activity both in vivo and in vitro decreased after about 23 hours of darkness and continued to decrease to about 25% and 16% of initial activity, respectively, after 40 hours. The amount of Fe-protein and MoFe-protein in Frankia of the same plants decreased to 60% and 35%, respectively, after 40 hours of darkness. Loss of nitrogenase activity thus appeared to be largely explained by loss of MoFe-protein.  相似文献   

15.
The aim of this work was to investigate the poorly understood effects of co-culturing of two white rot fungi on the production of lignin-degrading enzyme activities. Four species, Ceriporiopsis subvermispora, Physisporinus rivulosus, Phanerochaete chrysosporium and Pleurotus ostreatus were cultured in pairs to study the degradation of aspen wood and the production of lignin-degrading enzymes. Potential of co-culturing for biopulping was evaluated. Chemical analysis of decayed aspen wood blocks showed that co-culturing of C. subvermispora with P. ostreatus could significantly stimulate wood decay, when compared to monocultures. Based on the fungi tested here, however, this effect is species-specific. Other combinations of fungi were slightly stimulating or not stimulatory. The pattern of lignin degradation was altered towards the acid insoluble part of lignin especially in co-cultures where P. ostreatus was included as a partner. The use of agar plates containing the polymeric dye Poly R-478 showed elevated dye decolourization at the confrontation zone between mycelia. Laccase was significantly stimulated only in the co-culture of P. ostreatus with C. subvermispora. Manganese peroxidase activity was stimulated in co-cultures of P. ostreatus with C. subvermispora or with P. rivulosus. Immunoblotting indicated changes in lignin-degrading enzymes and/or their isoform composition in response to co-culturing. This is the first report on the effects of co-culturing of potential biopulping fungi on wood degradation, and gives basic knowledge on fungal interactions during wood decay that can be utilized in practical applications.  相似文献   

16.
Summary Trichoderma reesei QM 9414 was grown on wheat straw as the sole carbon source. The straw was pretreated by physical and chemical methods. The particle size of straw was less than 0.177 mm. Growth of T. reesei QM 9414 was maximal with alkali-pretreated straw whereas cellulase production was optimal when physically pretreated straw was used as substrate. Cellulase yields expressed as IU enzyme activity/g cellulose present in the cultures were considerably higher when alkali pretreatment of wheat straw was omitted. Cellulase yields of 666 IU/g cellulose for filter paper activity (FPA) are the highest described for cultures of T. reesei QM 9414 carried out in analogous conditions. Crystallinity index of the cellulose contained in wheat straw increased slightly after alkali pretreatment. This increase did not decrease cellulose accessibility to the fungus. Delignification of wheat straw was not necessary to achieve the best cellulase production.  相似文献   

17.
Three different ruminal fungi, a Neocallimastix sp. (strain LM-1), a Piromonas sp. (strain SM-1), and a Sphaeromonas sp. (strain NM-1), were grown anaerobically in liquid media which contained a suspension of either 1% (wt/vol) purified cellulose or finely milled wheat straw as the source of fermentable carbon. Fungal biomass was estimated by using cell wall chitin or cellular protein in cellulose cultures and chitin in straw cultures. Both strains LM-1 and SM-1 degraded cellulose with a concomitant increase in fungal biomass. Maximum growth of both fungi occurred after incubation for 4 days, and the final yield of protein was the same for both fungi. Cellulose degradation continued after growth ceased. Strain NM-1 failed to grow in the cellulose medium. All three anaerobic fungi grew in the straw-containing medium, and loss of dry weight from the cultures indicated degradation of straw to various degrees (LM-1 greater than SM-1 greater than NM-1). The total fiber component and the cellulose component of the straw were degraded in similar proportions, but the lignin component remained undegraded by any of the fungi. Maximum growth yield on straw occurred after 4 days for strain LM-1 and after 5 days for strains SM-1 and NM-1. The calculated yield of cellular protein for strain LM-1 was twice that of both strains SM-1 and NM-1. The cellular protein yield of strain SM-1 was the same in both cellulose and straw cultures. In contrast to cellulose, straw degradation ceased after the end of the growth phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Three different ruminal fungi, a Neocallimastix sp. (strain LM-1), a Piromonas sp. (strain SM-1), and a Sphaeromonas sp. (strain NM-1), were grown anaerobically in liquid media which contained a suspension of either 1% (wt/vol) purified cellulose or finely milled wheat straw as the source of fermentable carbon. Fungal biomass was estimated by using cell wall chitin or cellular protein in cellulose cultures and chitin in straw cultures. Both strains LM-1 and SM-1 degraded cellulose with a concomitant increase in fungal biomass. Maximum growth of both fungi occurred after incubation for 4 days, and the final yield of protein was the same for both fungi. Cellulose degradation continued after growth ceased. Strain NM-1 failed to grow in the cellulose medium. All three anaerobic fungi grew in the straw-containing medium, and loss of dry weight from the cultures indicated degradation of straw to various degrees (LM-1 greater than SM-1 greater than NM-1). The total fiber component and the cellulose component of the straw were degraded in similar proportions, but the lignin component remained undegraded by any of the fungi. Maximum growth yield on straw occurred after 4 days for strain LM-1 and after 5 days for strains SM-1 and NM-1. The calculated yield of cellular protein for strain LM-1 was twice that of both strains SM-1 and NM-1. The cellular protein yield of strain SM-1 was the same in both cellulose and straw cultures. In contrast to cellulose, straw degradation ceased after the end of the growth phase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Production of cellulases was followed in 4 cultures of higher fungi (Agrocybe cylindracea, Len tinus tigrinus, Pleurotus ostreatus, Ramaria formosa) cultivated on various substrates under different conditions. Stationary cultivation was more suitable than the submerged one. Addition of carboxymethy cellulose (CMC) was more suitable than addition of glucose. The cellulase activity in the presence of CMC was higher after a 12-d cultivation than after a 23-d period. Pine sawdust was most effective of all the substrates tested for the production of cellulases. Beech sawdust and wheat or rye straw were also useful. The addition of yeast autolyzate decreased the production of cellulases. A culture ofL. tigrinud was the best producer.  相似文献   

20.
Conditioned medium was obtained from suspension cultures of soybean (Glycine max L. Merrit) cells after incubating them for 4 to 8 days with rhizobia which were separated from the soybean cells by two dialysis bags, one within another. This conditioned medium from the plant cell side (PCM) of the two membranes was used to elicit and influence nitrogenase activity (acetylene reduction) in rhizobia. When conditions for obtaining PCM from the soybean cell suspension cultures were varied, it could be shown that freshly grown rhizobia were able to induce active compounds in the PCM. These compounds caused acetylene reduction activity in test rhizobia under conditions where control rhizobia, containing various substrates, showed little or no acetylene reduction activity. Rhizobia that were already capable of acetylene reduction could not induce such compounds in the PCM when this was included with test rhizobia. The PCM from soybean cultures was also found to aid the expression of nitrogenase activity in suspension cultures of rhizobia normally associated with either peas, lupins, broad beans, or clovers. This is the first communication indicating nitrogenase activity in freeliving cultures for various species of rhizobia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号