首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interferon regulatory factors (IRFs) play roles in various biological processes including cytokine signaling, cell growth regulation and hematopoietic development. Although it has been reported that several IRFs are involved in bone metabolism, the role of IRF2 in bone cells has not been elucidated. Here, we investigated the involvement of IRF2 in RANKL-induced osteoclast differentiation. IRF2 overexpression in osteoclast pre-cursor cells enhanced osteoclast differentiation by regulating the expression of NFATc1, a master regulator of osteoclasto-genesis. Conversely, IRF2 knockdown inhibited osteoclast differentiation and decreased the NFATc1 expression. Moreover, IRF2 increased the translocation of NF-κB subunit p65 to the nucleus in response to RANKL and subsequently induced the expression of NFATc1. IRF2 plays an important role in RANKL-induced osteoclast differentiation by regulating NF-κB/NFATc1 signaling pathway. Taken together, we demonstrated the molecular mechanism of IRF2 in osteoclast differentiation, and provide a molecular basis for potential therapeutic targets for the treatment of bone diseases characterized by excessive bone resorption.  相似文献   

3.
4.
5.
Interferon Regulatory Factors (IRFs) play fundamental roles in dendritic cell (DC) differentiation and function. In particular, IRFs are critical transducers of TLR signaling and dysregulation in this family of factors is associated with the development of autoimmune disorders such as Systemic Lupus Erythematosus (SLE). While several IRFs are expressed in DCs their relative contribution to the aberrant phenotypic and functional characteristics that DCs acquire in autoimmune disease has not been fully delineated. Mice deficient in both DEF6 and SWAP-70 (= Double-knock-out or DKO mice), two members of a unique family of molecules that restrain IRF4 function, spontaneously develop a lupus-like disease. Although autoimmunity in DKO mice is accompanied by dysregulated IRF4 activity in both T and B cells, SWAP-70 is also known to regulate multiple aspects of DC biology leading us to directly evaluate DC development and function in these mice. By monitoring Blimp1 expression and IL-10 competency in DKO mice we demonstrate that DCs in these mice exhibit dysregulated IL-10 production, which is accompanied by aberrant Blimp1 expression in the spleen but not in the peripheral lymph nodes. We furthermore show that DCs from these mice are hyper-responsive to multiple TLR ligands and that IRF4 plays a differential role in in these responses by being required for the TLR4-mediated but not the TLR9-mediated upregulation of IL-10 expression. Thus, DC dysfunction in lupus-prone mice relies on both IRF4-dependent and IRF4-independent pathways.  相似文献   

6.
7.
8.
9.
Keratinocytes of the oral mucosa and epidermis play key roles in host defense. In addition to functioning as a physical barrier, they also produce cytokines to elicit inflammation in response to infection or injury. We recently established that receptor-interacting protein kinase 4 (RIPK4) and interferon regulatory factor 6 (IRF6) function as a cell-intrinsic signaling axis to regulate keratinocyte differentiation. In this study, we have demonstrated a functional relationship between RIPK4 and IRF6 in the control of proinflammatory cytokine expression in keratinocytes. The overexpression of RIPK4 by oral keratinocytes induced the strong expression of CCL5 and CXCL11. In contrast, the expression of other cytokines (e.g. IL8 and TNF) was largely unaffected, thus demonstrating specificity in the induction of proinflammatory cytokine expression by RIPK4. CCL5 and CXCL11 expression were also induced in response to the activation of the PKC pathway, and gene silencing experiments indicated that their inducible expression was dependent on RIPK4 and IRF6. Moreover, gene reporter assays suggested that RIPK4 induces CCL5 and CXCL11 expression by stimulating the transactivation of their promoters by IRF6. Accordingly, our findings suggest that the RIPK4-IRF6 signaling axis plays a multifaceted role in barrier epithelial homeostasis through its regulation of both keratinocyte inflammation and differentiation.  相似文献   

10.
Many studies have been conducted over the last few decades to understand better the functions of IRF3 and IRF7 in antiviral immune responses. However, the precise underlying molecular mechanism of IRF1-mediated immune response remains largely unknown. Recent studies indicate that IRF1 exerts strong antiviral activities against several viral infections through diverse mechanisms, both in IFN-dependent and IFN-independent manners. Nevertheless, the efficacy and kinetics of inducing IFNs and ISGs remain unknown. Here we summarize the recent advances in IRF1 research and highlight its potential roles in initiating IFN immune responses and subsequent IRF1-triggering antiviral responses. Challenges regarding the IFN positive feedback mediated by IRF7 during infection will be discussed; this classical loop may also be mediated in part by IRF1. Therefore, we propose a revised model that may help decipher the functional roles of IRF1 in antiviral immunity.  相似文献   

11.
12.
13.
14.
15.
A SNP within intron4 of the interferon regulatory factor4 (IRF4) gene, rs12203592*C/T, has been independently associated with pigmentation and age‐specific effects on naevus count in European‐derived populations. We have characterized the cis‐regulatory activity of this intronic region and using human foreskin‐derived melanoblast strains, we have explored the correlation between IRF4 rs12203592 homozygous C/C and T/T genotypes with TYR enzyme activity, supporting its association with pigmentation traits. Further, higher IRF4 protein levels directed by the rs12203592*C allele were associated with increased basal proliferation but decreased cell viability following UVR, an etiological factor in melanoma development. Since UVR, and accompanying IFNγ‐mediated inflammatory response, is associated with melanomagenesis, we evaluated its effects in the context of IRF4 status. Manipulation of IRF4 levels followed by IFNγ treatment revealed a subset of chemokines and immuno‐evasive molecules that are sensitive to IRF4 expression level and genotype including CTLA4 and PD‐L1.  相似文献   

16.
17.
18.
The interferon regulatory factor (IRF) family of DNA-binding proteins regulates expression of interferon-inducible genes with roles in the immune response and carcinogenesis. IRF4 is involved in the differentiation of B and T cells and is overexpressed in B-cell malignancies as a result of c-REL (NF-κB) hyperactivation. IRF4 polymorphisms are associated with susceptibility to chronic lymphoid leukemia (CLL) and non-Hodgkin lymphoma (NHL). We examined 13 IRF4 SNPs in 114 cases of childhood acute lymphoblastic leukemia (ALL) and 388 newborn controls from Wales (U.K.) using TaqMan assays. IRF4 intron 4 SNP rs12203592 showed a male-specific risk association (OR = 4.4, 95% CI = 1.5 to 12.6, P = 0.007). Functional consequences of the C > T substitution at this SNP were assessed by cell-based reporter assays using three different cell lines. We found a repressive effect of the rs12203592 wildtype allele C on IRF4 promoter activity (P < 0.001) but no repression by the variant allele in any cell line tested. Thus, homozygosity for the rs12203592 variant allele would result in increased IRF4 expression. This increase would be compounded by high levels of NF-κB activity in males due to the absence of estrogen. IRF4 differs from other IRFs in its anti-interferon activity which interferes with immune surveillance. We propose that a detailed study of IRF4 can provide information on the mechanism of the sex effect and the role of immune surveillance in childhood ALL development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号