首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
σS (RpoS) is a highly unstable global regulatory protein in Escherichia coli , whose degradation is inhibited by various stress signals, such as carbon starvation, high osmolarity and heat shock. As a consequence, these stresses result in the induction of σS-regulated stress-protective proteins. The two-component-type response regulator, RssB, is essential for the rapid proteolysis of σS and is probably involved in the transduction of some of these stress signals. Acetyl phosphate can be used as a phosphodonor for the phosphorylation of various response regulators in vitro and, in the absence of the cognate sensor kinases, acetyl phosphate can also modulate the activities of several response regulators in vivo . Here, we demonstrate increased in vivo half-lives of σS and the RpoS742::LacZ hybrid protein (also a substrate for RssB-dependent proteolysis) in acetyl phosphate-free ( pta – ackA ) deletion mutants, even though no sensor kinase was eliminated. The in vivo data indicate that acetyl phosphate acts through the response regulator, RssB. In vitro , efficient phosphotransfer from radiolabelled acetyl phosphate to the Asp-58 residue of RssB (the expected site of phosphorylation in the RssB receiver domain) was observed. Via such phosphorylation, acetyl phosphate may thus modulate RssB activity even in an otherwise wild-type background. While acetyl phosphate is not essential for the transduction of specific environmental stress signals, it could play the role of a modulator of RssB-dependent proteolysis that responds to the metabolic status of the cells reflected in the highly variable cellular acetyl phosphate concentration.  相似文献   

2.
sigmaS (RpoS) is the master regulator of the general stress response in Escherichia coli. Several stresses increase cellular sigmaS levels by inhibiting proteolysis of sigmaS, which under non-stress conditions is a highly unstable protein. For this ClpXP-dependent degradation, the response regulator RssB acts as a recognition factor, with RssB affinity for sigmaS being modulated by phosphorylation. Here, we demonstrate that RssB can also act like an anti-sigma factor for sigmaS in vivo, i.e. RssB can inhibit the expression of sigmaS-dependent genes in the presence of high sigmaS levels. This becomes apparent when (i) the cellular RssB/sigmaS ratio is at least somewhat elevated and (ii) proteolysis is reduced (for example in stationary phase) or eliminated (for example in a clpP mutant). Two modes of inhibition of sigmaS by RssB can be distinguished. The 'catalytic' mode is observed in stationary phase cells with a substoichiometric RssB/sigmaS ratio, requires ClpP and therefore probably corresponds to sequestering of sigmaS to Clp protease (even though sigmaS is not degraded). The 'stoichiometric' mode occurs in clpP mutant cells upon overproduction of RssB to levels that are equal to those of sigmaS, and therefore probably involves binary complex formation between RssB and sigmaS. We also show that, under standard laboratory conditions, the cellular level of RssB is more than 20-fold lower than that of sigmaS and is not significantly controlled by stresses that upregulate sigmaS. We therefore propose that antisigma factor activity of RssB may play a role under not yet identified growth conditions (which may result in RssB induction), or that RssB is a former antisigma factor that during evolution was recruited to serve as a recognition factor for proteolysis.  相似文献   

3.
4.
It is now well established that the σS subunit of RNA polymerase is a master regulator in a complex regulatory network that governs the expression of many stationary-phase-inducible genes in Escherichiacoli. In this review, more recent findings will be summarized that demonstrate that σS also acts as a global regulator for the osmotic control of gene expression, and actually does so in exponentially growing cells. Thus, many σS-dependent genes are induced during entry into stationary phase as well as in response to osmotic upshift. K+ glutamate, which accumulates in hyperosmotically stressed cells, seems to specifically stimulate the activity of σS-containing RNA polymerase at σS-dependent promoters. Moreover, osmotic upshift results in an elevated cellular σS level similar to that observed in stationary-phase cells. This increase is the result of a stimulation of rpoS translation as well as an inhibition of the turnover of σS, which in exponentially growing non-stressed cells is a highly unstable protein. Whereas the RNA-binding protein HF-I, previously known as a host factor for the replication of phage Qβ RNA, is essential for rpoS translation, the recently discovered response regulator RssB, and ClpXP protease, have been shown to be required for σS degradation. The finding that the histone-like protein H-NS is also involved in the control of rpoS translation and σS turnover, sheds new light on the function of this protein in osmoregulation. Finally, preliminary evidence suggests that additional stresses, such as heat shock and acid shock, also result in increased cellular σS levels in exponentially growing cells. Taken together, σS function is clearly not confined to stationary phase. Rather, σS may be regarded as a sigma factor associated with general stress conditions.  相似文献   

5.
6.
The alternate sigma factor sigmaS plays an important role in the survival of Salmonella typhimurium following sudden encounters with a variety of stress conditions. The level of sigmaS is very low in rapidly growing cells but dramatically increases as those cells encounter environmental stress or enter into stationary phase. This increase is due in large measure to the stabilization of sigmaS protein against degradation by the ClpXP protease. The MviA protein, also known as RssB or SprE in Escherichia coli, is a putative member of a two component signal transduction system that plays a central role in facilitating sigmaS degradation by ClpXP. In contrast to most two-component systems, MviA does not appear to regulate gene expression but is believed to interact directly with sigmaS and somehow facilitate degradation. We now provide evidence that MviA(RssB) directly interacts both with sigmaS and ClpX in vivo, presumably enabling presentation of sigmaS to the ClpP protease. Interactions were demonstrated using a bacterial two-hybrid system in which sigmaS, MviA, and ClpX were fused to separate moieties of Bordetella pertussis CyaA (adenylate cyclase). Paired hybrid plasmids containing Cya'-MviA/RpoS-'Cya or Cya'-MviA/ClpX-'Cya successfully reconstituted adenylate cyclase activity in both S. typhimurium and E. coli. However, no direct interactions were detected between ClpX and RpoS. A second series of experiments has indicated that the interaction between MviA and sigmaS requires the N-terminus but not the C-terminus of MviA. Cellular levels of MviA appear to be very low in the cell based on lacZ fusion, Western blot and Northern blot analyses suggesting a catalytic role for MviA in sigmaS degradation. Mutagenesis of MviA residue D58, a canonical residue subject to phosphorylation in many two-component systems, decreased the ability of MviA to facilitate sigmaS turnover in vivo confirming that phosphorylation of MviA increases MviA activity.  相似文献   

7.
In the model organism Escherichia coli and related species, the general stress response relies on tight regulation of the intracellular levels of the promoter specificity subunit RpoS. RpoS turnover is exclusively dependent on RssB, a two‐domain response regulator that functions as an adaptor that delivers RpoS to ClpXP for proteolysis. Here, we report crystal structures of the receiver domain of RssB both in its unphosphorylated form and bound to the phosphomimic BeF3 . Surprisingly, we find only modest differences between these two structures, suggesting that truncating RssB may partially activate the receiver domain to a “meta‐active” state. Our structural and sequence analysis points to RssB proteins not conforming to either the Y–T coupling scheme for signaling seen in prototypical response regulators, such as CheY, or to the signaling model of the less understood FATGUY proteins.  相似文献   

8.
9.
10.
sigma(S) (RpoS), the master regulator of the general stress response in Escherichia coli, is a model system for regulated proteolysis in bacteria. sigma(S) turnover requires ClpXP and the response regulator RssB, whose phosphorylated form exhibits high affinity for sigma(S). Here, we demonstrate that recognition by the RssB/ClpXP system involves two distinct regions in sigma(S). Region 2.5 of sigma(S) (a long alpha-helix) is sufficient for binding of phosphorylated RssB. However, this interaction alone is not sufficient to trigger proteolysis. A second region located in the N-terminal part of sigma(S), which is exposed only upon RssB-sigma(S) interaction, serves as a binding site for the ClpX chaperone. Binding of the ClpX hexameric ring to sigma(S)-derived reporter proteins carrying the ClpX-binding site (but not the RssB-binding site) is also not sufficient to commit the protein to degradation. Our data indicate that RssB plays a second role in the initiation of sigma(S) proteolysis that goes beyond targeting of sigma(S) to ClpX, and suggest a model for the sequence of events in the initiation of sigma(S) proteolysis.  相似文献   

11.
PhyR is an unusual type of response regulator consisting of a receiver domain and an extracytoplasmic function (ECF) sigma factor-like domain. It was recently described as a master regulator of general stress response in Methylobacterium extorquens . Orthologues of this regulator are present in essentially all free-living Alphaproteobacteria. In most of them, phyR is genetically closely linked to a gene encoding an ECF σ factor. Here, we investigate the role of these two regulators in the soybean symbiont Bradyrhizobium japonicum USDA110. Using deletion mutants and phenotypic assays, we showed that PhyR and the ECF σ factor σEcfG are involved in heat shock and desiccation resistance upon carbon starvation. Both mutants had symbiotic defects on the plant hosts Glycine max (soybean) and Vigna radiata (mungbean). They induced fewer nodules than the wild type and these nodules were smaller, less pigmented, and their specific nitrogenase activity was drastically reduced 2 or 3 weeks after inoculation. Four weeks after infection, soybean nodule development caught up to a large extent whereas most mungbean nodules remained defective even 5 weeks after infection. Remarkably, both mutants triggered aberrant nodules on the different host plants with ectopically emerging roots. Microarray analysis revealed that PhyR and σEcfG control congruent regulons suggesting both regulators are part of the same signalling cascade. This finding was further substantiated by in vitro protein–protein interaction studies which are in line with a partner-switching mechanism controlling gene regulation triggered by phosphorylation of PhyR. The large number of genes of unknown function present in the PhyR/σEcfG regulon and the conspicuous symbiotic phenotype suggest that these regulators are involved in the Bradyrhizobium –legume interaction via yet undisclosed mechanisms.  相似文献   

12.
13.
The alternative sigma factor σE is activated by unfolded outer membrane proteins (OMPs) and plays an essential role in Salmonella pathogenesis. The canonical pathway of σE activation in response to envelope stress involves sequential proteolysis of the anti-sigma factor RseA by the PDZ proteases DegS and RseP. Here we show that σE in Salmonella enterica sv. Typhimurium can also be activated by acid stress. A σE-deficient mutant exhibits increased susceptibility to acid pH and reduced survival in an acidified phagosomal vacuole. Acid activation of σE-dependent gene expression is independent of the unfolded OMP signal or the DegS protease but requires processing of RseA by RseP. The RseP PDZ domain is indispensable for acid induction, suggesting that acid stress may disrupt an inhibitory interaction between RseA and the RseP PDZ domain to allow RseA proteolysis in the absence of antecedent action of DegS. These observations demonstrate a novel environmental stimulus and activation pathway for the σE regulon that appear to be critically important during Salmonella –host cell interactions.  相似文献   

14.
In Escherichia coli the response regulator SprE (RssB) facilitates degradation of the sigma factor RpoS by delivering it to the ClpXP protease. This process is regulated: RpoS is degraded in logarithmic phase but becomes stable upon carbon starvation, resulting in its accumulation. Because SprE contains a CheY domain with a conserved phosphorylation site (D58), the prevailing model posits that this control is mediated by phosphorylation. To test this model, we mutated the conserved response regulator phosphorylation site (D58A) of the chromosomal allele of sprE and monitored RpoS levels in response to carbon starvation. Though phosphorylation contributed to the SprE basal activity, we found that RpoS proteolysis was still regulated upon carbon starvation. Furthermore, our results indicate that phosphorylation of wild-type SprE occurs by a mechanism that is independent of acetyl phosphate.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号