首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A minimum model of adenine nucleotide exchange through the inner membrane of mitochondria is presented. The model is based on a sequential mechanism, which presumes ternary complexes formed by binding of metabolites from both sides of the membrane. The model explains the asymmetric kinetics of ADP-ATP exchange as a consequence of its electrogenic character. In energized mitochondria, a part of the membrane potential suppresses the binding of extramitochondrial ATP in competition with ADP. The remaining part of the potential difference inhibits the back exchange of internal ADP for external ATP. The assumption of particular energy-dependent conformational states of the translocator is not necessary. The model is not only compatible with the kinetic properties reported in the literature about the adenine nucleotide exchange, but it also correctly describes the response of mitochondrial respiration to the extramitochondrial ATP/ADP ratio under different conditions. The model computations reveal that the translocation step requires some loss of free energy as driving force. The size of the driving force depends on the flux rate as well as on the extra- and intramitochondrial ATP/ADP quotients. By both quotients the translocator controls the export of ATP formed by oxidative phosphorylation in mitochondria.  相似文献   

2.
A novel method exploiting the differential affinity of ADP and ATP to Mg2+ was developed to measure mitochondrial ADP-ATP exchange rate. The rate of ATP appearing in the medium after addition of ADP to energized mitochondria, is calculated from the measured rate of change in free extramitochondrial [Mg2+] reported by the membrane-impermeable 5K+ salt of the Mg2+-sensitive fluorescent indicator, Magnesium Green, using standard binding equations. The assay is designed such that the adenine nucleotide translocase (ANT) is the sole mediator of changes in [Mg2+] in the extramitochondrial volume, as a result of ADP-ATP exchange. We also provide data on the dependence of ATP efflux rate within the 6.8-7.8 matrix pH range as a function of membrane potential. Finally, by comparing the ATP-ADP steady-state exchange rate to the amount of the ANT in rat brain synaptic, brain nonsynaptic, heart and liver mitochondria, we provide molecular turnover numbers for the known ANT isotypes.  相似文献   

3.
The influence of cholesterol on ADP-ATP exchange activity was measured in the reconstituted system, submitochondrial (sonic) particles and mitoplasts (isolated inner mitochondrial membranes). In the reconstituted system, cholesterol markedly enhanced the nucleotide-uptake rate, when added to membranes of various compositions i.e., pure phosphatidylcholine, phosphatidylcholine/phosphatidylethanolamine mixtures and crude egg yolk phospholipids. The stimulation was linearly dependent on the amount of incorporated cholesterol up to 7–13% added sterol, depending on the type of phospholipids. Cholesterol influenced neither the amount of actively reconstituted carrier proteins nor the affinity of the carrier towards nucleotides nor the breakpoint of temperature dependence in the Arrhenius plot. The stimulation could be correlated with an increase in the molecular activity of the carrier protein. The influence of cholesterol was also measured in the natural environment of the carrier protien, i.e., the inner mitochondrial membrane. Both with submitochondrial particles from beef heart and especially with mitoplasts from rat liver, incorporation of cholesterol by fusion with sterol-containing liposomes led to a stimulation of ADP-ATP exchange activity, comparable to the effect in the reconstituted system. These results are discussed in relation to the absence of cholesterol in the inner mitochondrial membrane and in the view of the generally accepted ordering effect of cholesterol on phospholipid bilayers.  相似文献   

4.
We previously described a method to measure ADP-ATP exchange rates in isolated mitochondria by recording the changes in free extramitochondrial [Mg2+] reported by an Mg2+-sensitive fluorescent indicator, exploiting the differential affinity of ADP and ATP to Mg2+. In the current article, we describe a modification of this method suited for following ADP-ATP exchange rates in environments with competing reactions that interconvert adenine nucleotides such as in permeabilized cells that harbor phosphorylases and kinases, ion pumps exhibiting substantial ATPase activity, and myosin ATPase activity. Here we report that the addition of BeF3 and sodium orthovanadate (Na3VO4) to medium containing digitonin-permeabilized cells inhibits all ADP-ATP-using reactions except the adenine nucleotide translocase (ANT)-mediated mitochondrial ADP-ATP exchange. An advantage of this assay is that mitochondria that may have been also permeabilized by digitonin do not contribute to ATP consumption by the exposed F1Fo-ATPase due to its sensitivity to BeF3 and Na3VO4. With this assay, ADP-ATP exchange rate mediated by the ANT in permeabilized cells is measured for the entire range of mitochondrial membrane potential titrated by stepwise additions of an uncoupler and expressed as a function of citrate synthase activity per total amount of protein.  相似文献   

5.
Various modulating influences of negative and positive membrane charges on binding and transport properties of the reconstituted ADP/ATP carrier from mitochondria were investigated. The results are interpreted in terms of functional and structural asymmetries of the adenine nucleotide carrier embedded in the liposomal membrane. The surface potential of liposomes was measured directly either by potential-dependent adsorption of the fluorescent dye 2-p-toluidinylnaphthalene 6-sulfonate (TNS) or by the pK shift of the lipophilic pH indicator pentadecylumbelliferone. These results were correlated with the following observations. (1) Negative surface potentials increase the apparent dissociation constant, Kd, for binding of the negatively charged inhbitor carboxyatractylate to the reconstituted carrier protein. (2) Surface potentials modulate the apparent transport affinity, Km, of the reconstituted adenine nucleotide carrier for ADP and ATP. The interaction of surface charges with the transport function was investigated with carrier proteins oriented both right-side-out and inside-out. Thus the influence of the surface potential on the function of the ADP/ATP carrier could be determined for the internal and external active sites of the translocator on the outer side of the membrane. Large discrepancies were observed not only between the potentials measured directly (fluorescent dyes) and those measured indirectly (binding and transport affinities), but also between the different surface potentials determined from the influence on the alternatively oriented carrier proteins. The effect of surface charges was rather weak on the cytosolic side of the translocator, whereas there was a strong influence of surface charges on the active site at the matrix side. The most obvious explanation, i.e., screening of negative membrane charges by positively charged amino acid residues at the protein surface, could be ruled out. Besides the modulation of binding affinities for substrates and inhibitors, an additional side-specific effect of surface charges on the transport velocity was observed. Again, the influence on the internal active site of the ADP/ATP carrier was found to be much higher than that on the cytosolic site. The observed effects can be explained by a definite structural asymmetry of the carrier embedded in the liposomal membrane. That site which is physiologically exposed to the cytosol is located at a considerable distance from the plane of the membrane, whereas the opposite site seems to be in close proximity to the membrane surface. Moreover, a spatial equivalence of carboxyatractylate binding site and nucleotide binding site at the external side of the carrier protein was concluded.  相似文献   

6.
The transport of inorganic pyrophosphate (PPi) by the adenine nucleotide translocator from beef heart mitochondria was studied in a reconstituted system. The transport of PPi is dependent on appropriate transmembrane substrates. The activity of PPi exchange is about one tenth as compared to the ADP/ATP exchange, whereas the transport affinity for PPi is very low (2-5 mM). The adenine nucleotide carrier catalyzes a strict counterexchange of PPi and nucleotides with an exchange stoichiometry close to 1. The inhibitor specificity of PPi exchange is comparable to that of ADP/ATP exchange.  相似文献   

7.
Net adenine nucleotide transport into and out of the mitochondrial matrix via the ATP-Mg/Pi carrier is activated by micromolar calcium concentrations in rat liver mitochondria. The purpose of this study was to induce net adenine nucleotide transport by varying the substrate supply and/or extramitochondrial ATP consumption in order to evaluate the effect of the mitochondrial adenine nucleotide pool size on intramitochondrial adenine nucleotide patterns under phosphorylating conditions. Above 12 nmol/mg protein, intramitochondrial ATP/ADP increased with an increase in the mitochondrial adenine nucleotide pool. The relationship between the rate of respiration and the mitochondrial ADP concentration did not depend on the mitochondrial adenine nucleotide pool size up to 9 nmol ADP/mg mitochondrial protein. The results are compatible with the notion that net uptake of adenine nucleotides at low energy states supports intramitochondrial ATP consuming processes and energized mitochondria may lose adenine nucleotides. The decrease of the mitochondrial adenine nucleotide content below 9 nmol/mg protein inhibits oxidative phosphorylation. In particular, this could be the case within the postischemic phase which is characterized by low cytosolic adenine nucleotide concentrations and energized mitochondria.  相似文献   

8.
The adenine nucleotide carrier from maize (Zea mays L. cv B 73) shoot mitochondria was solubilized with Triton X-100 and purified by sequential chromatography on hydroxyapatite and Matrex Gel Blue B in the presence of cardiolipin and asolectin. Sodium dodecyl sulfate-gel electrophoresis of the purified fraction showed a single polypeptide band with an apparent molecular mass of 32 kD. When reconstituted in liposomes, the adenine nucleotide carrier catalyzed a pyridoxal 5'-phosphate-sensitive ATP/ATP exchange. It was purified 168-fold with a recovery of 60% and a protein yield of 0.25% with respect to the mitochondrial extract. Among the various substrates and inhibitors tested, the reconstituted protein transported only ADP, ATP, GDP, and GTP, and was inhibited by atractyloside, bongkrekate, phenylisothiocianate, pyridoxal 5'-phosphate, and mersalyl (but not N-ethylmaleimide). Maximum initial velocity of the reconstituted ATP/ATP exchange was determined to be 2.2 mumol min-1 mg-1 protein at 25 degrees C. The half-saturation constants and the corresponding inhibition constants were 17 microM for ATP, 26 microM for ADP, 59 microM for GTP, and 125 microM for GDP. The activation energy of the ATP/ATP exchange was 48 kilojoule/mol between 0 and 15 degrees C, and 22 kilojoule/mol between 15 and 35 degrees C. Partial amino acid sequences showed that the purified protein was the product of the ANT-G1 gene sequenced previously (B. Bathgate, A. Baker, C.J. Leaver [1989] Eur J Biochem 183: 303-310).  相似文献   

9.
We have developed a mathematical model of adenine nucleotide translocase (ANT) function on the basis of the structural and kinetic properties of the transporter. The model takes into account the effect of membrane potential, pH, and magnesium concentration on ATP and ADP exchange velocity. The parameters of the model have been estimated from experimental data. A satisfactory model should take into account the influence of the electric potential difference on both ternary complex formation and translocation processes. To describe the dependence of translocation constants on electric potential we have supposed that ANT molecules carry charged groups. These groups are shifted during the translocation. Using the model we have evaluated the translocator efficiency and predicted the behavior of ANT under physiological conditions.  相似文献   

10.
Highly purified adenine nucleotide transporter from bovine heart mitochondria was reconstituted with phospholipids to form vesicles which catalyzed atractyloside-sensitive adenine nucleotide translocation. When internal ATP was exchanged with external ADP, this reaction was enhanced by agents capable of collapsing a membrane potential, but not by inorganic phosphate. When the purified nucleotide transporter was reconstituted together with a second protein fraction, nucleotide transport was stimulated by inorganic phosphate. The stimulated rate was eliminated by mersalyl or other SH reagents. The second protein fraction could be replaced by preparations of purified phosphate transporter.  相似文献   

11.
The ATP-Mg/Pi carrier in liver mitochondria is activated by micromolar Ca2+ and mediates net adenine nucleotide transport into and out of the mitochondrial matrix. The purpose of this study was to characterize certain features of ATP-Mg/Pi carrier activity that are essential for understanding how the mitochondrial adenine nucleotide content is regulated. The relative importance of ATP and ADP as transport substrates was investigated using specific trap assays to measure their separate rates of carrier-mediated efflux with Pi as the external counterion. Under energized conditions ATP efflux accounted for 88% of total ATP+ADP efflux. With oligomycin present to lower the matrix ATP/ADP ratio, ATP efflux was eliminated and ADP efflux was relatively unaffected. Mg2+ was stoichiometrically required for ATP influx and is probably transported simultaneously with ATP. Ca2+ and Mn2+ could substitute for the stoichiometric Mg2+ requirement. ADP influx and Pi-induced adenine nucleotide efflux were unaffected by external Mg2+. Experiments with Pi analogues suggested that Pi is transported as the divalent anion, HPO4(2-). The results show that ATP-Mg and divalent Pi are the major transport substrates; the most probable transport mechanism for the ATP-Mg/Pi carrier is an electroneutral exchange. The results are consistent with the hypothesis that the direction and magnitude of net adenine nucleotide movements are determined mainly by the (ATP-Mg)2- and HPO4(2-) concentration gradients across the inner mitochondrial membrane.  相似文献   

12.
Kinetics of sodium dependent glutamic acid transport have been studied in rat cortical synaptosomes at sufficiently high glutamic acid concentrations ([G]) to delineate the low affinity transporter. Computer optimization techniques were used to fit the data to models which account for the sodium and substrate dependence of uptake. The data fit about equally well models consisting of two carriers (Model 1) or one carrier plus a linear component (Model 2). However, the results of further studies were inconsistent with Model 1, but totally consistent with Model 2. Thus the results are incompatible with the presence of both high-and low-affinity carriers. The carrier model found in previous studies of high affinity glutamate transport predicts the effects of high [G] and [Na] observed in the present study. The biphasic effect of [Na] on velocity of uptake is the logical consequence of the operation of this model. The rate equation for this model has been utilized to define and compute kinetic parameters which characterize the transporter. These kinetic functions are remarkably similar in shape and magnitude to previous estimates from the studies of the high affinity transport (low [G]). The results of other studies by the author which corroborate and expand the predictions of the kinetic model are discussed. These have been combined with the present results to formulate a rather comprehensive model of glutamate function. This model can be used to describe function in terms of mathematical equations and to make predictions from these equations. These equations relate velocity of uptake and the kinetic parameters to sodium and substrate concentration, velocity to membrane potential, distribution ratio to the electrochemical potential, and release to time, compartment sizes, and exchange constants. Such processes as concentration in the presynaptic terminal, depolarization induced release, re-uptake following stimulus induced release, and postsynaptic depolarization are all possible consequences of the operation of this model. The wide applicability of the model to the transport of other substrates in addition to glutamate is discussed.  相似文献   

13.
A partially purified preparation of the aspartate/glutamate carrier from bovine heart mitochondria was reconstituted into liposomal membranes by chromatography on hydrophobic ion exchange resins. Based on the favorable conditions of this reconstituted system the transmembrane orientation of the inserted carrier protein could be determined by functional analysis. For reliable measurement of the reconstituted aspartate-glutamate exchange activity an optimized inhibitor-stop technique using pyridoxal phosphate was developed. By simultaneous application of both forward and backward exchange experiments the practical usefulness of the reconstituted system could be extended to investigations including variation of internal and external substrate concentrations over a wide range. Thereby a complete set of Km values for both aspartate and glutamate at both the internal and external side of the proteoliposomes could be established. These experiments led to the following results and conclusions: (i) The observed substrate affinities are clearly different for the two different membrane sides both for aspartate (external 50 microM, internal 3 mM) and glutamate (external about 200 microM, internal 3 mM). (ii) The exclusive presence of only one type of transport affinity for every single substrate at one side of the liposomal membrane clearly demonstrates the asymmetric orientation of the functionally active carrier protein molecules. (iii) When comparing the values of these constants with published data obtained in mitochondria, an inside-out orientation of the aspartate/glutamate carrier after isolation and reinsertion into liposomes is strongly suggested.  相似文献   

14.
Aliev MK  Saks VA 《Biofizika》2003,48(6):1075-1085
The kinetics of exchange of adenine nucleotides in a system with reconstituted mitochondrial adenine nucleotide translocase (ANT) was simulated mathematically to analyze the basic mechanisms of ANT functioning. Two known alternative kinetic schemes were analyzed, the ping-pong type scheme with single-center substrate binding and the scheme of sequential two-center substrate binding at opposite sides of ANT. According to our modeling, both schemes can explain the experimental data on the adenine nucleotide exchange in the reconstituted ANT system. However, the characteristic kinetic pattern of ADP exchanges in the mono exchange mode was reproduced only by the sequential binding scheme. This scheme is consistent with the data on the tetrameric structure of ANT. On the other hand, only the single-center binding scheme was compatible with recent data on possible translocation of ATP and ADP by the carrier that has no bound adenine nucleotide on its opposite side. Based on the analysis of the literature data on ANT properties, a compromise scheme of ANT operation was proposed. In the framework of this scheme, the ANT dimers function by the single-center binding mechanism: however, in tetramers they are integrated into a substructure with two oppositely oriented binding centers working by the mechanism of sequential substrate binding. Labile bonds between the ANT-forming dimers could allow conformational rearrangements of ANT induced by various influences on mitochondrial membrane structure, including those leading to the induction of permeability transition pores in apoptosis.  相似文献   

15.
The effect of the local anaesthetic, butacaine, on adenine nucleotide binding and translocation in rat liver mitochondria partially depleted of their adenine nucleotide content was investigated. The range of butacaine concentrations that inhibit adenine nucleotide translocation and the extent of the inhibition are similar to the values obtained for native mitochondria. Butacaine does not alter either the total number of atractyloside-sensitive binding sites of depleted mitochondria, or the affinity of these sites for ADP or ATP under conditions where a partial inhibition of the rate of adenine nucleotide translocation is observed. The data are consistent with an effect of butacaine on the process by which adenine nucleotides are transported across the mitochondrial inner membrane rather than on the binding of adenine nucleotides to sites on the adenine nucleotide carrier. The results are briefly discussed in relation to the use of local anaesthetics in investigations of the mechanism of adenine nucleotide translocation.  相似文献   

16.
In bovine heart mitochondria bongkrekic acid at concentrations as low as about 4 nmol/mg protein (a) completely inhibits phosphorylation of exogenous adenosine diphosphate (ADP) and dephosphorylation of exogenous adenosine triphosphate (ATP), (b) completely reverses atractyloside inhibition of inner membrane contraction induced by exogenous adenine nucleotides, and (c) decreases the amount of adenine nucleotide required to elicit maximal exogenous adenine nucleotide-induced inner membrane contraction to a level which appears to correspond closely with the concentration of contractile, exogenous adenine nucleotide binding sites Bongkrekic acid at concentrations greater than 4 nmol/mg protein induces inner membrane contraction which seems to depend on the presence of endogenous ADP and/or ATP. The findings appear to be consistent with the interpretations (a) that the inner mitochondrial membrane contains two types of contractile, adenine nucleotide binding sites, (b) that the two sites differ markedly with regard to adenine nucleotide affinity, (c) that the high affinity site is identical with the adenine nucleotide exchange carrier, (d) that the low affinity site is accessible exclusively to endogenous adenine nucleotides and is largely unoccupied in the absence of bongkrekic acid, and (e) that bongkrekic acid increases the affinity of both sites in proportion to the amount of the antibiotic bound to the inner membrane.  相似文献   

17.
Activation of the ADP/ATP carrier from mitochondria by cationic effectors   总被引:3,自引:0,他引:3  
The ADP/ATP carrier from the mitochondrial inner membrane was found to be influenced by cationic substances from the hydrophilic surroundings. Under low-ionic-strength conditions, addition of these cationic effectors fully activated the reconstituted adenine nucleotide translocator. The list of activators included divalent cations, polyamines, peptides and cationic proteins. The minimum requirement for an activator to be effective was the presence of at least two positive net charges, regardless of the size of the molecule. Cationic molecules were not activating when an intramolecular charge compensation was possible or when the two charges were too far apart from one another. The affinity of these activators varied from several hundred microM (diaminoalkanes, divalent cations) to 1 microM (cytochrome c, spermine) and even down to a few nM (polylysine). The activation by cations was fully reversible and was not due to fusion processes. It was not mediated by an interaction with the anionic substrates ADP and ATP, nor by interaction with the liposomes. The stimulation could directly and functionally be correlated to the reconstituted carrier protein. Activation was not observed in intact mitochondria, but could be demonstrated when the outer mitochondrial membrane had been removed by treatment with digitonin. These mitoplasts were stimulated by polycations similar to the ADP/ATP carrier in the reconstituted system.  相似文献   

18.
The transport mechanism of the reconstituted ornithine/citrulline carrier purified from rat liver mitochondria was investigated kinetically. A complete set of half-saturation constants (K(m)) was established for ornithine, citrulline and H(+) on both the external and internal side of the liposomal membrane. The internal affinity for ornithine was much lower than that determined on the external surface. The exclusive presence of a single transport affinity for ornithine on each side of the membrane indicated a unidirectional insertion of the ornithine/citrulline carrier into liposomes, probably right-side-out with respect to mitochondria. Two-reactant initial velocity studies of the homologous (ornithine/ornithine) and heterologous (ornithine/citrulline) exchange reactions resulted in a kinetic pattern which is characteristic of a simultaneous antiport mechanism. This type of mechanism implies that the carrier forms a ternary complex with the substrates before the transport reaction occurs. A quantitative analysis of substrate interaction revealed that rapid-equilibrium random conditions were fulfilled, characterized by a fast and independent binding of internal and external substrates.  相似文献   

19.
The ADP-ATP carrier (also referred to as the adenine nucleotide translocator) of Saccharomyces cerevisiae is encoded by a nuclear gene, translated in the cytosol, and imported into the mitochondrial inner membrane. In order to study the determinants of mitochondrial import, a series of fusion proteins, consisting of the first 21, 72, and 111 amino acids of the ADP-ATP carrier, joined to mouse dihydrofolate reductase were generated. Dihydrofate reductase is a cytoslic protein that does not bind mitochondria. The reticulocyte lysate reaction containing the 35S-methionine-labeled protein was incubated with mitochondria in a buffer containing 3% BSA. Following incubation for import, the reactions were treated with 1 mM PMSF or 25 micrograms/ml proteinase K; mitochondria were reisolated and analyzed by gel electrophoresis. The 21 and 72 amino acid hybrid proteins showed a low level of binding to mitochondria: the bound form was entirely protease accessible. The 111 amino acid hybrid protein was imported to a protease-protected location within mitochondria. It is concluded that the first 72 amino acids of the ADP-ATP carrier do not suffice to import the protein into mitochondria and that the region between amino acids 72 and 111, a region that contains a transmembrane-spanning domain, constitutes at least part of the mitochondrial import signal.  相似文献   

20.
Oligomycin occludes Na+ in an E1-form of the Na,K-ATPase. The rate constants for the release of Na+ from the E1-form and for the transition to the E2-form are about 0.5 s-1. The effect of oligomycin is not seen using other cations which also have a Na+-like effect on the enzyme conformation. The inhibitory effect of oligomycin on the ADP-ATP dependent Na:Na exchange but not on the accompanying ADP-ATP exchange can be explained from a decrease in the rate of release of Na+ from an E1 approximately phosphoform with Na+ occluded, E'1 approximately P (Na3), i.e. with Na+ in the membrane phase, to an E"1 approximately PNa3 form with Na+ not occluded. E"1 approximately PNa3 is at a step before formation of E2-P, and disappears at a high rate when ADP reacts with E"1 approximately P (Na3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号