首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Corynebacterium sarcosine oxidase is composed of A, B, C, and D subunits. To characterize these subunits, we analyzed their N-terminal sequences by automated Edman degradation. We identified 20 residues of subunit A, 58 of B, 31 of C, and 33 of D. There was no homology among these sequences according to secondary structure predictions and hydrophilicity profiles. But we found that subunit B contained a sequence homologous to that of the AMP-binding site of other flavoproteins.  相似文献   

3.
4.
Monomeric sarcosine oxidase (MSOX) is an inducible bacterial flavoenzyme that catalyzes the oxidative demethylation of sarcosine (N-methylglycine) and contains covalently bound FAD [8alpha-(S-cysteinyl)FAD]. This paper describes the spectroscopic and thermodynamic properties of MSOX as well as the X-ray crystallographic characterization of three new enzyme.inhibitor complexes. MSOX stabilizes the anionic form of the oxidized flavin (pK(a) = 8.3 versus 10.4 with free FAD), forms a thermodynamically stable flavin radical, and stabilizes the anionic form of the radical (pK(a) < 6 versus pK(a) = 8.3 with free FAD). MSOX forms a covalent flavin.sulfite complex, but there appears to be a significant kinetic barrier against complex formation. Active site binding determinants were probed in thermodynamic studies with various substrate analogues whose binding was found to perturb the flavin absorption spectrum and inhibit MSOX activity. The carboxyl group of sarcosine is essential for binding since none is observed with simple amines. The amino group of sarcosine is not essential, but binding affinity depends on the nature of the substitution (CH(3)XCH(2)CO(2)(-), X = CH(2) < O < S < Se < Te), an effect which has been attributed to differences in the strength of donor-pi interactions. MSOX probably binds the zwitterionic form of sarcosine, as judged by the spectrally similar complexes formed with dimethylthioacetate [(CH(3))(2)S(+)CH(2)CO(2)(-)] and dimethylglycine (K(d) = 20.5 and 17.4 mM, respectively) and by the crystal structure of the latter. The methyl group of sarcosine is not essential but does contribute to binding affinity. The methyl group contribution varied from -3.79 to -0.65 kcal/mol with CH(3)XCH(2)CO(2)(-) depending on the nature of the heteroatom (NH(2)(+) > O > S) and appeared to be inversely correlated with heteroatom electron density. Charge-transfer complexes are formed with MSOX and CH(3)XCH(2)CO(2)(-) when X = S, Se, or Te. An excellent linear correlation is observed between the energy of the charge transfer bands and the one-electron reduction potentials of the ligands. The presence of a sulfur, selenium, or telurium atom identically positioned with respect to the flavin ring is confirmed by X-ray crystallography, although the increased atomic radius of S < Se < Te appears to simultaneously favor an alternate binding position for the heavier atoms. Although L-proline is a poor substrate, aromatic heterocyclic carboxylates containing a five-membered ring and various heteroatoms (X = NH, O, S) are good ligands (K(d, X=NH) = 1.37 mM) and form charge-transfer complexes with MSOX. The energy of the charge-transfer bands (S > O > NH) is linearly correlated with the one-electron ionization potentials of the corresponding heterocyclic rings.  相似文献   

5.
A "sarcosine oxidase" was prepared from a creatinine-decomposing strain of Pseudomonas aeruginosa. The enzyme is inactivated by drying, lyophilization, and dialysis against distilled water. No dialyzable cofactor was found. Optimal activity of the enzyme is reached at pH 7.8. Enzyme activity is directly proportional to enzyme concentration and also to substrate concentration up to the point of saturation of enzyme with substrate molecules. One molecule of enzyme combines with one molecule of substrate. Data concerning the effect of temperature and of a variety of chemical compounds on the enzyme are presented. Its inactivation by heat follows the course of a first order reaction, and the critical thermal increment between 48° and 52°C. was calculated to be 103,000 calories per mol. The relationship of enzyme concentration to heat inactivation rates is illustrated.  相似文献   

6.
The inhibiting effects of several phenol compounds on electron transfer in the respiratory chain of submitochondrial particles were studied. It was shown that the terminal part of the succinate dehydrogenase complex contains a site, which specifically binds the negatively charged phenols (e. g. pentachlorophenol, 2,4-dibromophenol, 2-methoxy-4,6-dibromophenol). The efficiency of the inhibitor anion binding by this site is increased 12-fold after introduction of a methoxy-group into the o-position of 2,4-dibromophenol. Since this site binds both methoxy- and negatively charged phenol groups, it can also act as a possible site of ubisemiquinone interaction with succinate dehydrogenase. Based on the structural similiarity of the b-c1 complex inhibitors, e. g. antimycin, o-hydroxybenzoic acid amides, 2-hydroxy-3-alkyl-1,4-quinones, and ubisemiquinone, an assumption has been made on possible ubisemiquinone binding between cytochromes b and c1. A structural analysis of phenols inhibiting succinate dehydrogenase and the b-c1 complex revealed that in the region between cytochromes b and c1 there act only the inhimitors which contain: a) a negatively charged phenol group; b) a group comprising a heteroatom with an undepleted electron pair and which can act as a ligand, and c) a hydrophobic residue.  相似文献   

7.
The mechanism of the reduction of Corynebacterium sarcosine oxidase [EC 1.5.3.1] by dithiothreitol (DTT) was investigated. The reduction followed biphasic kinetics with second-order rate constants of 54 M-1 X S-1 and 5.4 M-1 X S-1 for the respective phases. When the oxidized enzyme was titrated with sarcosine under anaerobic conditions, no intermediate, such as a semiquinone or a charge-transfer complex, appeared during the reduction of the enzyme. On the other hand, on DTT titration, an intermediate with a semiquinoid character appeared, and its formation was maximum when half of the total FAD was reduced. An oxidized semiapoenzyme, which had lost 45% of the noncovalently-bound FAD present in the native enzyme, also showed biphasic kinetics in the reduction with DTT. The second-order rate constant was found to be 38 M-1 X S-1 for the fast phase. An intermediate was also formed and its concentration, estimated by electron spin resonance (ESR) measurement, was found to agree with that of the noncovalently-bound FAD. In addition, the oxidized semiapoenzyme, which had lost 95% of the noncovalently-bound FAD present in the native enzyme, was reduced with DTT much more slowly than the native enzyme. In this case, the second-order rate constant was found to be 0.4 M-1 X S-1, and no intermediate was observed during the titration with DTT. On the basis of these data, it is suggested that the noncovalently-bound FAD accepts electrons directly from DTT in the fast phase through the semiquinoid form, while the covalently-bound FAD accepts electrons from the reduced noncovalently-bound FAD in the slow phase without forming an intermediate.  相似文献   

8.
A sarcosine oxidase (sarcosine: oxygen oxidoreductase (demethylating), EC 1.5.3.1) isolated from Corynebacterium sp. U-96 contains both covalently bound FAD and noncovalently bound FAD. The noncovalent FAD reacts with sarcosine, the covalent FAD with molecular oxygen (Jorns, M.S. (1985) Biochemistry 24, 3189-3194). To clarify the reaction mechanism of the enzyme, kinetic investigations were performed by the stopped-flow method as well as by analysis of the overall reaction. The absorption spectrum of the enzyme in the steady state was very similar to that of the oxidized enzyme, and no intermediate enzyme species, such as a semiquinoid flavin, was detected. The rate for anaerobic reduction of the noncovalently bound FAD and the covalently bound FAD by sarcosine were 31 and 6.7 s-1, respectively. The latter value was smaller than the value of respective Vmax/e0 obtained by the overall reaction kinetics (Vmax/e0: the maximum velocity per enzyme concentration). Both rate constants for oxidation of the two FADs by molecular oxygen were 100 s-1. A reaction scheme of sarcosine oxidase is proposed to account for the data obtained; 70% of the enzyme functions via a fully reduced enzyme, and 30% of the enzyme goes along a side-path, without forming the fully reduced enzyme. In addition, it is suggested that the reactivity of noncovalently bound FAD with sarcosine is affected by the oxidation-reduction state of the covalently bound FAD, in contrast to the reactivity of the covalently bound FAD with molecular oxygen, which is independent of the oxidation-reduction state of the noncovalently bound FAD.  相似文献   

9.
10.
The overall reaction kinetics of Corynebacterium sarcosine oxidase were investigated and the reaction was shown to follow a ping-pong, bi-bi mechanism with two substrates, sarcosine and molecular oxygen. Sarcosine analogs, such as acetate, propionate and methoxyacetate, were competitive inhibitors of the reaction. Acetate caused characteristic alterations in optical and circular dichroic spectra, indicating that the microenvironment of the substrate-binding region of the enzyme increased in hydrophobicity on binding with the substrate analog. The dissociation constants of the analogs calculated from the spectral changes were in agreement with the kinetic inhibition constants. Inorganic metallic ions were also inhibitory. Of interest was the finding that the inhibition by Hg2+ was proportional to the square of its concentration, which suggests that at least two sulfhydryl groups are related to the catalytic activity of the enzyme.  相似文献   

11.
12.
Khanna P  Jorns MS 《Biochemistry》2003,42(4):864-869
Monomeric sarcosine oxidase (MSOX) and N-methyltryptophan oxidase (MTOX) are homologous bacterial flavoenzymes that contain covalently bound flavin [8alpha-(S-cysteinyl)FAD]. Reaction of MSOX or MTOX with a small excess of sodium borohydride results in immediate flavin reduction to a species that exhibits spectral properties (lambda(max) = 405 nm with a second broad peak at 332 nm) similar to those of 3,4-dihydroflavin. The borohydride-reduced enzymes retain full catalytic activity. Substrate reduction converts the 405 nm species to an air-sensitive tetrahydroflavin that reacts with oxygen to yield unmodified oxidized enzyme. Unexpectedly, the putative 3,4-dihydroflavin bound to MSOX or MTOX is unstable in the absence of substrate. An isosbestic conversion of the 405 nm species to yield unmodified, oxidized flavin is observed when the reaction is conducted under aerobic conditions (k(obs) = 4.9 x 10(-2) min(-1)). Under anaerobic conditions, an oxygen-sensitive species resembling 1,5-dihydroflavin is formed in an isosbestic reaction that occurs at a rate similar to that of the aerobic reaction (k(obs) = 5.3 x 10(-2) min(-1)). Possible reaction of the 3,4-dihydroflavin with a second molecule of borohydride to yield an air-sensitive tetrahydroflavin is unlikely since prior scavenging of residual borohydride with excess formaldehyde had no effect on the aerobic conversion to unmodified oxidized flavin. The observed instability is attributed to a tautomeric rearrangement of the 3,4-dihydroflavin to generate 1,5-dihydroflavin, a species that is also air-sensitive. Evidence in favor of an active site facilitated tautomerization reaction is provided by the fact that the stability of the 405 nm species formed with MSOX is enhanced 200-fold upon denaturation with urea or heat. The observed tautomeric rearrangement of 3,4-dihydroflavin may provide insight regarding a related flavin tautomerization reaction that has been proposed as a key step in the biosynthesis of covalent flavin linkages.  相似文献   

13.
Zhao G  Jorns MS 《Biochemistry》2005,44(51):16866-16874
Monomeric sarcosine oxidase (MSOX) binds the L-proline zwitterion (pKa = 10.6). The reactive substrate anion is generated by ionization of the ES complex (pKa = 8.0). Tyr317 was mutated to Phe to determine whether this step might involve proton transfer to an active site base. The mutation does not eliminate the ionizable group in the ES complex (pKa = 8.9) but does cause a 20-fold decrease in the maximum rate of the reductive half-reaction. Kinetically determined Kd values for the ES complex formed with L-proline agree with results obtained in spectral titrations with the wild-type or mutant enzyme. Unlike the wild-type enzyme, Kd values with the mutant enzyme are pH-dependent, suggesting that the mutation has perturbed the pKa of a group that affects the Kd. As compared with the wild-type enzyme, an increase in charge transfer band energy is observed for mutant enzyme complexes with substrate analogues while a 10-fold decrease in the charge transfer band extinction coefficient is found for the complex with the L-proline anion. The results eliminate Tyr317 as a possible acceptor of the proton released upon substrate ionization. Since previous studies rule out the only other nearby base, we conclude that L-proline is the ionizable group in the ES complex and that amino acids are activated for oxidation upon binding to MSOX by stabilization of the reactive substrate anion. Tyr317 may play a role in substrate activation and optimizing binding, as judged by the effects of its mutation on the observed pKa, reaction rates, and charge transfer bands.  相似文献   

14.
Sarcosine oxidase from Corynebacterium sp. U-96 is inhibited by iodoacetamide (IAM) and the inhibition is prevented by the substrate analog, sodium acetate. To elucidate the mechanism of inhibition of the enzyme by IAM, we determined the amino acid sequences around the IAM-reactive cysteine residues, and the effects of the modification on the enzyme activity and the oxidation-reduction of the FAD moieties of the enzyme. The enzyme was specifically labeled with [14C]IAM, and the labeled subunit B was digested with trypsin and chymotrypsin. The HPLC profiles of the proteolytic digests showed mainly two radioactive peaks. The 14C-labeled peptides were purified, and their N-terminal sequences were determined to be Cys-Gly-Thr-Pro-Gly-Ala-Gly-Tyr (TC-1) and Ala-Gly-Ile-Ala-Cys-Xaa-Asp-Xaa-Val-Ala(-)- (TC-2). Peptide TC-2 contains a covalent FAD-binding sequence [Asx-His-Val-Ala; Shiga et al. (1983) Biochem. Int., 6, 737]. [14C]IAM-incorporation into the TC-1 sequence was strongly inhibited by sodium acetate. The N-terminal amino acid sequence of the CNBr fragment containing the TC-1 sequence (65 residues) was determined. According to the secondary structure predictions, Gly-Thr-Pro-Gly-Ala-Gly of the TC-1 sequence is located between the beta sheet and alpha helix of the sequence, indicating the presence of an AMP-binding site in the TC-1 region. The activity of the enzyme treated with IAM in the presence and absence of sodium acetate was not inhibited by sodium sulfite, which is known to react specifically with covalent FAD.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Monomeric sarcosine oxidase (MSOX) is a prototypical member of a recently recognized family of amine-oxidizing enzymes that all contain covalently bound flavin. Mutation of the covalent flavin attachment site in MSOX produces a catalytically inactive apoprotein (apoCys315Ala) that forms an unstable complex with FAD (K(d) = 100 muM), similar to that observed with wild-type apoMSOX where the complex is formed as an intermediate during covalent flavin attachment. In situ reconstitution of sarcosine oxidase activity is achieved by assaying apoCys315Ala in the presence of FAD or 8-nor-8-chloroFAD, an analogue with an approximately 55 mV higher reduction potential. After correction for an estimated 65% reconstitutable apoprotein, the specific activity of apoCys315Ala in the presence of excess FAD or 8-nor-8-chloroFAD is 14% or 80%, respectively, of that observed with wild-type MSOX. Unlike oxidized flavin, apoCys315Ala exhibits a high affinity for reduced flavin, as judged by results obtained with reduced 5-deazaFAD (5-deazaFADH(2)) where the estimated binding stoichiometry is unaffected by dialysis. The Cys315Ala.5-deazaFADH(2) complex is also air-stable but is readily oxidized by sarcosine imine, a reaction accompanied by release of weakly bound oxidized 5-deazaFAD. The dramatic difference in the binding affinity of apoCys315Ala for oxidized and reduced flavin indicates that the protein environment must induce a sizable increase in the reduction potential of noncovalently bound flavin (DeltaE(m) approximately 120 mV). The covalent flavin linkage prevents loss of weakly bound oxidized FAD and also modulates the flavin reduction potential in conjunction with the protein environment.  相似文献   

16.
Heterotetrameric sarcosine oxidase (TSOX) is a complex bifunctional flavoenzyme that contains two flavins. Most of the FMN in recombinant TSOX is present as a covalent adduct with an endogenous ligand. Enzyme denaturation disrupts the adduct, accompanied by release of a stoichiometric amount of sulfide. Enzyme containing>or=90% unmodified FMN is prepared by displacement of the endogenous ligand with sulfite, a less tightly bound competing ligand. Reaction of adduct-depleted TSOX with sodium sulfide produces a stable complex that resembles the endogenous TSOX adduct and known 4a-S-cysteinyl flavin adducts. The results provide definitive evidence for sulfide as the endogenous TSOX ligand and strongly suggest that the modified FMN is a 4a-sulfide adduct. A comparable reaction with sodium sulfide is not detected with other flavoprotein oxidases. A model of the postulated TSOX adduct suggests that it is stabilized by nearby residues that may be important in the electron transferase/oxidase function of the coenzyme.  相似文献   

17.
Zhao G  Song H  Chen ZW  Mathews FS  Jorns MS 《Biochemistry》2002,41(31):9751-9764
Conservative mutation of His269 (to Asn, Ala, or Gln) does not-significantly affect the expression of monomeric sarcosine oxidase (MSOX), covalent flavinylation, the physicochemical properties of bound FAD, or the overall protein structure. Turnover with sarcosine and the limiting rate of the reductive half-reaction with L-proline at pH 8.0 are, however, nearly 2 orders of magnitude slower than that with with wild-type MSOX. The crystal structure of the His269Asn complex with pyrrole-2-carboxylate shows that the pyrrole ring of the inhibitor is displaced as compared with wild-type MSOX. The His269 mutants all form charge-transfer complexes with pyrrole-2-carboxylate or methylthioacetate, but the charge-transfer bands are shifted to shorter wavelengths (higher energy) as compared with wild-type MSOX. Both wild-type MSOX and the His269Asn mutant bind the zwitterionic form of L-proline. The E(ox).L-proline complex formed with the His269Asn mutant or wild-type MSOX contains an ionizable group (pK(a) = 8.0) that is required for conversion of the zwitterionic L-proline to the reactive anionic form, indicating that His269 is not the active-site base. We propose that the change in ligand orientation observed upon mutation of His269 results in a less than optimal overlap of the highest occupied orbital of the ligand with the lowest unoccupied orbital of the flavin. The postulated effect on orbital overlap may account for the increased energy of charge-transfer bands and the slower rates of electron transfer observed for mutant enzyme complexes with charge-transfer ligands and substrates, respectively.  相似文献   

18.
19.
This study has used receptor autoradiography to characterize imidazoline binding sites (I-BS) in monoamine oxidase (MAO) A knockout and wild-type mice. A comparison between MAO-A and MAO-B, binding of the endogenous beta-carboline [(3)H]harmane, and I-BS, has been made using sections from brain and kidney. The loss of binding to MAO-A in the knockout animals was confirmed using the selective radioligand [(3)H]Ro41-1049, with labelling reduced to background levels. The binding of [(3)H]Ro19-6327 to MAO-B was unaffected, indicating no change in this isoform in response to the loss of MAO-A. A reduction in binding to the I(2)-BS, as labelled by both [(3)H]idazoxan and [(3)H]2-BFI (2-(2-benzofuranyl)-2-imidazoline), was seen in the MAO-A knockout animals in both brain and kidney sections, whereas binding to the I(1)-BS in kidney sections remained unchanged. The loss of I(2) binding was found to be regionally dependent and was positively correlated with the relative expression of MAO-A in specific regions in the wild-type animals. Using the MAO-A knockout mice it was also possible to demonstrate a non-MAO-A population of binding sites labelled by the putative I-BS endogenous ligand, harmane.  相似文献   

20.
Summary An isolate of Arthrobacter sp. produced the sarcosine oxidase which was purified to homogeneity. SDS-PAGE indicated that the enzyme was composed of four dissimilar subunits with molecular weights of 106, 43, 24, and 15 kDa. The genes encoding the four subunits of sarcosine oxidase were isolated and expressed in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号