首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The matrix pyrophosphate (PPi) content of isolated energized rat liver mitochondria incubated in the presence of ATP, Mg2+, Pi and respiratory substrate was about 100 pmol/mg of protein. 2. After incubation with sub-micromolar [Ca2+], this was increased by as much as 300%. There was a correlation between the effects of Ca2+ on PPi and on the increase in matrix volume reported previously [Halestrap, Quinlan, Whipps & Armston (1986) Biochem. J. 236, 779-787]. Half-maximal effects were seen at 0.3 microM-Ca2+. 3. Coincident with these effects, the total adenine nucleotide content increased in a carboxyatractyloside-sensitive manner. 4. Incubation with 0.2-0.5 mM-butyrate induced similar but smaller effects on mitochondrial swelling and matrix PPi and total adenine nucleotide content. Addition of butyrate after Ca2+, or vice versa, caused Ca2+-induced mitochondrial swelling to stop or reverse, while matrix PPi increased 30-fold. 5. Addition of atractyloside or the omission of ATP from incubations greatly enhanced swelling induced by Ca2+ without increasing matrix PPi. 6. Swelling of mitochondria incubated under de-energized conditions in iso-osmotic KSCN was progressively enhanced by the addition of increasing concentrations of PPi (1-20 mM) or valinomycin. 7. In iso-osmotic potassium pyrophosphate swelling was slow initially, but accelerated with time. This acceleration was inhibited by ADP, whereas carboxyatractyloside induced rapid swelling. Swelling in other iso-osmotic PPi salts showed that the rate of entry decreased in the order NH4+ greater than K+ greater than Na+ greater than Li+, whereas choline, tetramethylammonium and Tris did not enter. It is suggested that the adenine nucleotide translocase transports small univalent cations when PPi is bound and that PPi can also be transported when the transporter is in the conformation induced by carboxyatractyloside. 8. It is concluded that Ca2+ and butyrate cause swelling of energized mitochondria through this effect of PPi on K+ permeability of the mitochondrial inner membrane. 9. Freeze-clamped livers from rats treated with glucagon or phenylephrine show 30-50% increases in tissue PPi. It is proposed that Ca2+-mediated increases in mitochondrial PPi are responsible for the increase in matrix volume and total adenine nucleotide content observed after hormone treatment.  相似文献   

2.
Adenine nucleotide transport over the carboxyatractyloside-insensitive ATP-Mg/Pi carrier was assayed in isolated rat liver mitochondria with the aim of investigating a possible regulatory role for Ca2+ on carrier activity. Net changes in the matrix adenine nucleotide content (ATP + ADP + AMP) occur when ATP-Mg exchanges for Pi over this carrier. The rates of net accumulation and net loss of adenine nucleotides were inhibited when free Ca2+ was chelated with EGTA and stimulated when buffered [Ca2+]free was increased from 1.0 to 4.0 microM. The unidirectional components of net change were similarly dependent on Ca2+; ATP influx and efflux were inhibited by EGTA in a concentration-dependent manner and stimulated by buffered free Ca2+ in the range 0.6-2.0 microM. For ATP influx, increasing the medium [Ca2+]free from 1.0 to 2.0 microM lowered the apparent Km for ATP from 4.44 to 2.44 mM with no effect on the apparent Vmax (3.55 and 3.76 nmol/min/mg with 1.0 and 2.0 microM [Ca2+]free, respectively). Stimulation of influx and efflux by [Ca2+]free was unaffected by either ruthenium red or the Ca2+ ionophore A23187. Calmodulin antagonists inhibited transport activity. In isolated hepatocytes, glucagon or vasopressin promoted an increased mitochondrial adenine nucleotide content. The effect of both hormones was blocked by EGTA, and for vasopressin, the effect was blocked also by neomycin. The results suggest that the increase in mitochondrial adenine nucleotide content that follows hormonal stimulation of hepatocytes is mediated by an increase in cytosolic [Ca2+]free that activates the ATP-Mg/Pi carrier.  相似文献   

3.
The effect of agaric acid as inducer of mitochondrial permeability transition was studied. It was found that: (i) agaric acid (AA) promoted efflux of accumulated Ca2+, collapse of transmembrane potential, and mitochondrial swelling; (ii) these effects depend on membrane fluidity; (iii) ADP inhibited the effect of AA on Ca2+ efflux, and (iv) AA blocked binding of the sulfhydryl reagent, eosin-5-maleimide, to the adenine nucleotide translocase. It is proposed that AA induces pore opening through binding of the citrate moiety to the ADP/ATP carrier; this interaction must be stabilized by insertion of the alkyl chain in the lipid milieu of the membrane.  相似文献   

4.
The influence of nucleotides on 2,4-dinitrophenol (DNP)-induced K+ efflux from intact rat liver mitochondria has been studied. ATP and ADP at micromolar concentrations were found to inhibit mitochondrial potassium transport, whereas GTP, GDP, CTP, and UTP did not show tha same effect. The values of half-maximal inhibition (IC50) were approximately 20 microM for ATP and approximately 60 microM for ADP. It is suggested that adenine nucleotides exert their inhibitory action at the matrix side of the inner mitochondrial membrane since the inhibitor of adenine nucleotide translocase atractyloside at concentration of 1 microM completely removed the inhibitory effect of ATP and ADP. The mitochondrial ATPase inhibitor oligomycin (2 microg/ml) was found to reduce slightly the rate of DNP-induced K+ efflux and had no effect on inhibition by adenine nucleotides; the latter was insensitive to Mg2+ and the changes in pH. It seems likely that the regulation of potassium transport is not due to phosphorylation of the channel-forming protein but to binding of the nucleotides in specific regulatory sites. The possibility of potassium efflux from mitochondria in the presence of uncoupler via the ATP-dependent potassium channel is discussed.  相似文献   

5.
1. Mitochondrial Ca2+, accumulated by succinate oxidation was released by addition of 50 microM atractyloside. Beside this Ca2+ efflux, a large oxidation of pyridine nucleotides and sustained membrane depolarization occurs. An absolute requirement for acetate to support Ca2+ release is demonstrated. 2. Membrane de-energization, NAD(P)H oxidation, and Ca2+ efflux as induced by atractyloside were temperature-dependent, since it occurs when mitochondria are incubated at 22 degrees C and was abolished at 4 degrees C. 3. Taking into account this latter, the effects of atractyloside on mitochondrial Ca2+ release appears not to be a simple result of the binding of the inhibitor to adenine nucleotide translocase. 4. It is proposed that the mechanism involved in atractyloside-driven membrane permeability to Ca2+ must be related with the transference of the conformational change of the carrier, to another membrane structure responsible for the maintenance permeability to ions.  相似文献   

6.
Rat liver mitochondria were incubated at 30 degrees C with 4 mM ATP in a medium similar in electrolyte composition to that of hepatic cytosol. Under these conditions, a net increase in mitochondrial adenine nucleotides was observed that was dependent on the concentration of free Ca2+ [( Ca2+]) in the incubation medium. At 0.2 microM [Ca2+] or less, there was no demonstrable uptake of adenine nucleotides; at 0.4 microM [Ca2+], or greater, net uptake occurred. The calcium-dependent accumulation of nucleotides by mitochondria required Mg2+ in the incubation medium and was insensitive to carboxyatractyloside. The uptake of adenine nucleotides was enhanced by the addition of antimycin A or antimycin A together with oligomycin. Accumulation of nucleotides appeared to be associated with a small increase in mean mitochondrial volume, but the membrane potential was not affected. No uptake or loss of NAD-NADH by mitochondria was detected. Ruthenium red failed to inhibit the calcium-dependent uptake of adenine nucleotides by the mitochondria, indicating that stimulation of this process by Ca2+ does not involve transport of the cation into mitochondria by the Ca2+ uniporter. Because glucagon acts to elevate cytosolic [Ca2+] from approximately 0.2 microM to 0.6 microM, the same range affecting nucleotide uptake, it is proposed that the increase in mitochondrial adenine nucleotides that follows treatment with glucagon is mediated by the rise in cytosolic [Ca2+] produced by the hormone. This hypothesis was supported by the observation that epinephrine and A23187, agents that raise cytosolic [Ca2+], increased the content of mitochondrial adenine nucleotides in isolated hepatocytes. Furthermore, cells, incubated under calcium-depleting conditions, had a diminished response to glucagon.  相似文献   

7.
We previously showed that Ca2+-induced cyclosporin A-sensitive membrane permeability transition (MPT) of mitochondria occurred with concomitant generation of reactive oxygen species (ROS) and release of cytochrome c (Free Rad. Res.38, 29-35, 2004). To elucidate the role of alpha-tocopherol in MPT, we investigated the effect of alpha-tocopherol on mitochondrial ROS generation, swelling and cytochrome c release induced by Ca2+ or hydroxyl radicals. Biochemical analysis revealed that alpha-tocopherol suppressed Ca2+-induced ROS generation and oxidation of critical thiol groups of mitochondrial adenine nucleotide translocase (ANT) but not swelling and cytochrome c release. Hydroxyl radicals also induced cyclosporin A-sensitive MPT of mitochondria. alpha-Tocopherol suppressed the hydroxyl radical-induced lipid peroxidation, swelling and cytochrome c release from mitochondria. These results indicate that alpha-tocopherol inhibits ROS generation, ANT oxidation, lipid peroxidation and the opening of MPT, thereby playing important roles in the prevention of oxidative cell death.  相似文献   

8.
Mitochondria play an important role in apoptosis by generating reactive oxygen species (ROS) and inducing membrane permeability transition (MPT). Recent studies on alpha-lipoic acid (LA) and its reduced form, dihydrolipoic acid, suggest that these agents (LAs) inhibit apoptosis of cells by means of their antioxidant activity. On the other hand, LAs also stimulate Ca2+-dependent mitochondrial MPT and induce apoptosis of certain cells. Thus, the role of LAs in apoptotic cell death remains obscure. We investigated the mechanism of LA-induced MPT of mitochondria. Biochemical analysis revealed, in the presence of Ca2+, inorganic phosphate and succinate, LA induced uncoupling of oxidative phosphorylation, stimulated oxidation of pyridine nucleotides and enhanced Ca2+-induced MPT, as characterized by decrease in Ca2+ loading, ROS generation, oxidation of thiol groups of adenine nucleotide translocator, membrane depolarization, swelling, and cytochrome c release in an incubation time and concentration dependent manner. LA also stimulated hydroxyl radical-induced MPT in a alpha-tocopherol-inhibitable manner. Cyclosporine A, a potent inhibitor of mitochondrial MPT, inhibited all these events induced by LA. These results indicate that, under certain conditions, LA stimulates Ca2+-induced MPT through the decrease in loading capacity of Ca2+ and that MPT is involved in LA-induced apoptotic cell death. Since fairly high doses of LA have been used as a dietary supplement, the possible occurrence of such side effects, including mitochondrial dysfunction and induction of apoptosis in normal tissues, should be studied.  相似文献   

9.
1. Isolated rat liver and heart mitochondria incubated in 150 mM-KSCN or sucrose medium in the presence of respiratory-chain inhibitors showed a large increase in swelling when exposed to 250 microM-Ca2+. Swelling was inhibited by bongkrekic acid and cyclosporin A in both media and by ADP in KSCN medium; the effect of ADP was reversed by carboxyatractyloside. These results demonstrate that this is a suitable technique with which to study the opening of the Ca2(+)-induced non-specific pore of the mitochondrial inner membrane and implicate the adenine nucleotide carrier in this process. 2. Titration of the rate of swelling with increasing concentrations of cyclosporin showed the number of cyclosporin-binding sites (+/- S.E.M.) in liver and heart mitochondria to be respectively 113.7 +/- 5.0 (n = 9) and 124.3 +/- 11.2 (n = 10) pmol/mg of protein, with a Ki of about 5 nM. 3. Liver and heart mitochondrial-matrix fractions were prepared free of membrane and cytosolic contamination and shown to contain cyclosporin-sensitive peptidyl-prolyl cis-trans isomerase (cyclophilin) activity. Titration of isomerase activity with cyclosporin gave values (+/- S.E.M.) of 110.6 +/- 10.1 (n = 5) and 165.4 +/- 15.0 (n = 3) pmol of enzyme/mg of liver and heart mitochondrial protein respectively, with a Ki of 2.5 nM. The similarity of these results to those from the swelling experiments suggest that the isomerase may be involved in the Ca2(+)-induced swelling. 4. The rapid light-scattering change induced in energized heart mitochondria exposed to submicromolar Ca2+ [Halestrap (1987) Biochem. J. 244, 159-164] was inhibited by ADP and bongkrekic acid, the former effect being reversed by carboxyatractyloside. These results suggest an interaction of Ca2+ with the adenine nucleotide carrier when the 'c' conformation. 5. A model is proposed in which mitochondrial peptidyl-prolyl cis-trans isomerase interacts with the adenine nucleotide carrier in the presence of Ca2+ to cause non-specific pore opening. The model also explains the involvement of the adenine nucleotide translocase in the PPi-mediated cyclosporin-insensitive increase in K+ permeability described in the preceding paper [Davidson & Halestrap (1990) Biochem. J. 268, 147-152]. 6. The physiological and pathological implications of the model are discussed in relation to reperfusion injury and cyclosporin toxicity.  相似文献   

10.
Carboxyatractylate (CAT) and atractylate inhibit the mitochondrial adenine nucleotide translocator (ANT) and stimulate the opening of permeability transition pore (PTP). Following pretreatment of mouse liver mitochondria with 5 microM CAT and 75 microM Ca2+, the activity of PTP increased, but addition of 2 mM ADP inhibited the swelling of mitochondria. Extramitochondrial Ca2+ concentration measured with Calcium-Green 5N evidenced that 2 mM ADP did not remarkably decrease the free Ca2+ but the release of Ca2+ from loaded mitochondria was stopped effectively after addition of 2 mM ADP. CAT caused a remarkable decrease of the maximum amount of calcium ions, which can be accumulated by mitochondria. Addition of 2 mM ADP after 5 microM CAT did not change the respiration, but increased the mitochondrial capacity for Ca2+ at more than five times. Bongkrekic acid (BA) had a biphasic effect on PT. In the first minutes 5 microM BA increased the stability of mitochondrial membrane followed by a pronounced opening of PTP too. BA abolished the action about of 1 mM ADP, but was not able to induce swelling of mitochondria in the presence of 2 mM ADP. We conclude that the outer side of inner mitochondrial membrane has a low affinity sensor for ADP, modifying the activity of PTP. The pathophysiological importance of this process could be an endogenous prevention of PT at conditions of energetic depression.  相似文献   

11.
Ca(2+)-induced mitochondrial depolarization was studied in single isolated rat brain and liver mitochondria. Digital imaging techniques and rhodamine 123 were used for mitochondrial membrane potential measurements. Low Ca(2+) concentrations (about 30--100 nM) initiated oscillations of the membrane potential followed by complete depolarization in brain mitochondria. In contrast, liver mitochondria were less sensitive to Ca(2+); 20 microm Ca(2+) was required to depolarize liver mitochondria. Ca(2+) did not initiate oscillatory depolarizations in liver mitochondria, where each individual mitochondrion depolarized abruptly and irreversibly. Adenine nucleotides dramatically reduced the oscillatory depolarization in brain mitochondria and delayed the onset of the depolarization in liver mitochondria. In both type of mitochondria, the stabilizing effect of adenine nucleotides completely abolished by an inhibition of adenine nucleotide translocator function with carboxyatractyloside, but was not sensitive to bongkrekic acid. Inhibitors of mitochondrial permeability transition cyclosporine A and bongkrekic acid also delayed Ca(2+)-depolarization. We hypothesize that the oscillatory depolarization in brain mitochondria is associated with the transient conformational change of the adenine nucleotide translocator from a specific transporter to a non-specific pore, whereas the non-oscillatory depolarization in liver mitochondria is caused by the irreversible opening of the pore.  相似文献   

12.
In this study we investigated fluctuations in mitochondrial membrane potential (DeltaPsim) in single isolated brain mitochondria using fluorescence imaging. Mitochondria were attached to coverslips and perfused with K+-based buffer containing 20 microM EDTA, supplemented with malate and glutamate, and rhodamine 123 for DeltaPsim determination. DeltaPsim fluctuations were triggered by mitochondrial Ca2+ uptake since they were inhibited by both ruthenium red, a Ca2+-uniporter blocker, and by high concentrations of EGTA. A very low concentration of Ca2+ (approximately 30 nM) was required to initiate the fluctuations. Both ATP and ADP reversibly inhibited DeltaPsim fluctuations, with maximal effects occurring at 100 microM. The effect of nucleotides could not be explained by the reversed mode of mitochondrial ATP-synthase, since oligomycin was not effective and nonhydrolysable analogs of ATP and ADP did not stop the fluctuations. The effects of adenine nucleotides were abolished by blockade of the adenine nucleotide translocator with carboxyatractyloside, but were insensitive to another inhibitor, bongkrekic acid. ATP-sensitive K+-channels are not involved in the mechanism of DeltaPsim fluctuations, since the inhibitor 5-hydroxydecanoate or the activator diazoxide did not affect dynamics of DeltaPsim. We suggest DeltaPsim fluctuations in brain mitochondria are not spontaneous, but are triggered by Ca2+ and are modulated by adenine nucleotides, possibly from the matrix side of the inner mitochondrial membrane.  相似文献   

13.
The effects of ADP, carboxyatractyloside (CAT) and the local anaesthetic nupercaine on the energy-dependent Ca2+ uptake by rat liver mitochondria oxidizing succinate in the presence of oligomycin were compared, using incubation media of 320 mosM and 120 mosM tonicities. In hypotonic media the mitochondrial Ca2+ capacity was increased by 50%, and the mitochondria were more stable to the damaging effects of Ca + Pi. In the presence of ADP the Ca2+ capacities of mitochondria increased both in normotonic and hypotonic media; however, the absolute amounts of calcium consumed were levelled off. CAT abolished the effect of ADP on the mitochondrial Ca2+ uptake and equalized the Ca2+ capacities of rat liver mitochondria in the both media. The local anaesthetic nupercaine also increased the Ca2+ capacity of mitochondria. The effects of nupercaine and ADP were additive. CAT abolished the effect of ADP but not that of nupercaine. Measurements of the intramitochondrial contents of adenine nucleotides showed that in 120 mosM media there was a significant increase in the intramitochondrial content of ATP and the total pool of adenine nucleotides. It was concluded that in hypotonic media the mitochondrial adenine nucleotide carrier exists predominantly in the m-conformation thus facilitating the energization of mitochondria.  相似文献   

14.
The potential protective action of 1,4-dihydropyridine derivatives (cerebrocrast, gammapyrone, glutapyrone, and diethone) against oxidative stress was assessed on mitochondrial bioenergetics, inner membrane anion channel (IMAC), Ca2+-induced opening of the permeability transition pore (PTP), and oxidative damage induced by the oxidant pair adenosine diphosphate (ADP)/Fe2+ (lipid peroxidation) of mitochondria isolated from rat liver. By using succinate as the respiratory substrate, respiratory control ratio (RCR), ADP to oxygen ratio (ADP/O), state 3, state 4, and uncoupled respiration rates were not significantly affected by gammapyrone, glutapyrone, and diethone concentrations up to 100 microM. Cerebrocrast at concentrations higher than 25 microM depressed RCR, ADP/O, state 3, and uncoupled respiration rates, but increased three times state 4 respiration rate. The transmembrane potential (deltapsi) and the phosphate carrier rate were also decreased. At concentrations lower than 25 microM, cerebrocrast inhibited the mitochondrial IMAC and partially prevented Ca2+-induced opening of the mitochondrial PTP, whereas gammapyrone, glutapyrone, and diethone were without effect. Cerebrocrast, gammapyrone, and glutapyrone concentrations up to 100 microM did not affect ADP/Fe2+-induced lipid peroxidation of rat liver mitochondria, while very low diethone concentrations (up to 5 microM) inhibited it in a dose-dependent manner, as measured by oxygen consumption and thiobarbituric acid reactive substances formation. Diethone also prevented deltapsi dissipation due to lipid peroxidation initiated by ADP/Fe2+. It can be concluded that: none of the compounds interfere with mitochondrial bioenergetics at concentrations lower than 25 microM; cerebrocrast was the only compound that affected mitochondrial bioenergetics, but only for concentrations higher than 25 microM; at concentrations that did not affect mitochondrial bioenergetics (< or = 25 microM), only cerebrocrast inhibited the IMAC and partially prevented Ca2+-induced opening of the PTP; diethone was the only compound that expressed antioxidant activity at very low concentrations (< or = 5 microM). Cerebrocrast acting as an inhibitor of the IMAC and diethone acting as an antioxidant could provide effective protective roles in preventing mitochondria from oxidative damage, favoring their therapeutic interest in the treatment of several pathological situations known to be associated with cellular oxidative stress.  相似文献   

15.
Using flow cytometric analysis and potential-sensitive fluorescent dye TMRM Ca2+ -induced changes of membrane potential of isolated smooth muscle mitochondria were studied. It was shown, that Ca2+ (100 microM) addition to the incubation medium induced mitochondrial membrane depolarization that probably could be explained by Ca2+/H+ -exchanger activation which functioning lead to membrane potential dissipation. In the case of ruthenium red (10 microM) preliminary presence in incubation medium, Ca2+ (100 microM) addition did not lead to membrane potential dissipation. Hence, membrane potential dissipation was caused by an increase of matrix Ca2+ concentration. In the presence of Mg2+ (3 mM) and ATP (3 mM), Ca2+ addition did not cause depolarization. It was supposed that in this case ATP synthase acted in the opposite direction as H+ -pump and prevented from mitochondrial membrane potential dissipation. Thus, the flow cytometry method allows to register membrane potential of isolated smooth muscle mitochondria and also to test the effectors, capable to modulate this parameter.  相似文献   

16.
Cepharanthine (CEP), a biscocrourine alkaloid, has been widely used in Japan for the treatment of several disorders. Furthermore, accumulated evidence shows that CEP protects against some cell death systems but not others. Recently, it was found that mitochondria play an important role in a mechanism of apoptosis involving membrane permeability transition (MPT). Although CEP stabilizes the mitochondrial membrane structure and protects some functions of mitochondria from damage, the mechanism of action of CEP on MPT remains obscure. In this study, therefore, we examined the effect of CEP on Ca2+- and Fe2+/ADP-induced MPT of isolated mitochondria. CEP inhibited Ca2+-induced swelling, depolarization, Cyt.c release, and the release of Ca2+ in a concentration dependent manner. CEP also inhibited Ca2+-induced generation of reactive oxygen species and Fe/ADP-induced swelling and lipid peroxidation. Furthermore, CEP suppressed Ca2+-induced thiol modification of adenine nucleotide transloase (ANT). These results suggested that CEP suppressed MPT by a decrease in affinity of cyclophilin D for ANT. From these results it was concluded that the suppression of MPT by CEP might be due to its inhibitory action on Ca2+ release and antioxidant activity and that CEP might suppress the mechanism of apoptotic cell death when directly interacted with mitochondria in cells.  相似文献   

17.
The effects of Reye's plasma, allantoin, and salicylates on mitochondrial structure and Ca2+ transport have been investigated. Measurements of Ca2+ transport showed that when 20-30 microM Ca2+ was added to isolated rat liver mitochondria preincubated with one of these agents, Ca2+ uptake was followed by its spontaneous release into the medium. This was accompanied by large-amplitude swelling; the onset preceded the Ca2+ release. No further Ca2+ release was induced by uncoupler or the Ca2+ ionophore, A23187. The mitochondria continued to swell even after all of the Ca2+ had been released. The time between the addition of Ca2+ and the onset of swelling (or Ca2+ release) depended on the concentration of the agent added and the preincubation time; the extent of swelling did not. These effects were prevented, but not reversed, by ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, ruthenium red, rotenone, or adenine nucleotides. The massive swelling and membrane disruption were confirmed by electron microscopy of the treated vs untreated mitochondria. Similar results concerning swelling and Ca2+ release were also seen with Ca2+ alone, but the time scale was much longer (i.e., greater than 3-4 min), indicating that these agents act by potentiating Ca2+-induced alterations in mitochondrial structure, as suggested by our earlier work (T.Y. Segalman and C.P. Lee (1982) Arch. Biochem. Biophys. 214, 522-530; M.E. Martens and C.P. Lee (1984) Biochem. Pharmacol. 33, 2869-2876). Our data show, therefore, that allantoin, salicylates, and the "toxic" agent in Reye's plasma severely limit the ability of isolated rat liver mitochondria to maintain their structural integrity under conditions of limited Ca2+ loading.  相似文献   

18.
Cyclosporin A prevents the opening of a nonspecific pore in the inner membrane of liver mitochondria when added prior to Ca2+. In the presence of 10 microM Ca2+ cyclosporin is unable to close the pore and restore the original permeability unless ADP is also added. ADP acts at a high-affinity site (Km 5 microM), corresponding to the adenine nucleotide transporter. This effect of ADP is prevented and reversed by carboxyatractyloside. In the presence of carboxyatractyloside, cyclosporin added with higher concentrations of ADP (Km 70 microM) also can close the pore. This suggests that a lower-affinity ADP-binding component as well as cyclophilin and the adenine nucleotide transporter can modulate the sensitivity of the pore to cyclosporin.  相似文献   

19.
Under conditions of inhibiting oxidative phosphorylation of oligomycin palmitoyl-CoA (p-CoA) decreases the rate of energy dependent reduction of acetoacetate and Ca2+-capacity of mitochondria in a phosphate medium. Energy independent osmotic swelling of mitochondria in NH4NO3, which depends on H+ permeability of the inner mitochondrial membrane is inhibited by ADP and acclereated by p-CoA. Carnitin and competitive ADP abolish all the effects of p-CoA. It is concluded that decreased energization induced by p-CoA is related to an increase in the inner mitochondrial membrane permeability b- H+ as a result of the inhibitor bindings with adenine nucleotide translocase.  相似文献   

20.
Apolipoprotein C (apo C) was shown to decrease the Ca2+ capacity and membrane potential of mitochondria isolated from rat liver. The specific ligands of adenine nucleotide carrier, ADP and carboxyatractyloside (CAT), inhibited the effect of apo C on the mitochondrial membrane potential. The effect of ADP and CAT was revealed in the absence of Ca2+. We conclude that in the presence of apo C, adenine nucleosides carrier transforms into a pore, and this causes the decrease in the membrane potential of the mitochondria. ADP and CAT support the primary conformation of the carrier and therefore inhibit the effect of apolipoprotein C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号