首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Substrate specificity of the bacterial penicillinamidohydrolase (penicillinacylase, EC 3.5.1.11) fromEscherichia coli was determined by measuring initial rates of enzyme hydrolysis of different substrates within zero order kinetics. SomeN-phenylacetyl derivatives of amino acids and amides of phenylacetic acid and phenoxyacetic acid of different substituted amides of these acids or amides, structurally and chemically similar to these compounds, served as substrates. Significant differences in ratios of initial Tates of the enzyme hydrolysis of different substrates were found when using a toluenized suspension of bacterial cells or a crude enzyme preparation, in spite of the fact that the enzyme is localized between the cell wall and cytoplasmic membrane, in the so-called periplasmic space.N-phenylacetyl derivatives are the most rapidly hydrolyzed substrates. Beta-phenylpropionamide and 4-phenylbutyramide were not utilized as substrates. The substrate specificity of the enzyme is discussed with respect to a possible use of certain colourless compounds as substrates, hydrolysis of which yields chromophor products suitable for a simple and rapid assay of the enzyme activity.  相似文献   

3.
Synthesis of penicillinamidohydrolase (penicillin acylase, EC 3.5.1.11) in Escherichia coli is subjected to the absolute catabolite repression by glucose and partial repression by acetate. Both types of catabolite repression of synthesis of the enzyme in Escherichia coli are substantially influenced by cyclic 3',5'-adenosinemonophosphate (cAMP). Growth diauxie in a mixed medium containing glucose and phenylacetic acid serving as carbon and energy sources is overcome by cAMP. cAMP does not influence the basal rate of the enzyme synthesis (without the inducer). Derepression of synthesis of penicillinamidohydrolase by cAMP in a medium with glucose and inducer (phenylacetic acid) is associated with utilization of the inducer, due probably to derepression of other enzymes responsible for degradation of phenylacetic acid. Lactate can serve as a catabolically neutral source of carbon suitable for the maximum production of penicillinamidohydrolase. The gratuitous induction of the enzyme synthesis in a medium with lactate as the carbon and energy source and with phenylacetic acid is not influenced by cAMP; however, cAMP overcomes completely the absolute catabolite repression of the enzyme synthesis by glucose.  相似文献   

4.
5.
Two genes coding for a Val8-variant of the human calcitonin (hCT) are synthesized on two different codon biases: the native codons for the hCT gene and the codons preferential forEscherichia coli. Both genes are fused to a synthetic human interferon-gamma (IF) gene [6] and expressed in various strains ofE. coli K12. It is found that, in all host strains used, the level of expression of both genes is similar and much lower (1/50–1/100) than that of the IF gene alone.  相似文献   

6.
Summary The polyamine content in cells is regulated by both polyamine biosynthesis and its transport. We recently obtained and characterized three clones of polyamine transport genes (pPT104, pPT79 and pPT71) inEscherichia coli. The system encoded by pPT104 was the spermidine-preferential uptake system and that encoded by pPT79 the putrescine-specific uptake system. Furthermore, these two systems were periplasmic transport systems consisting of four kinds of proteins: pPT104 clone encoded potA, -B,-C, and -D proteins and pPT79 clone encoded potF, -G, -H, and -I proteins, judging from the deduced amino acid sequences of the nucleotide sequences of these clones. PotD and -F proteins were periplasmic substrate binding proteins and potA and -G proteins membrane associated proteins having the nucleotide binding site. PotB and -C proteins, and potH and -I proteins were transmembrane proteins probably forming channels for spermidine and putrescine, respectively. Their amino acid sequences in the corresponding proteins were similar to each other. The functions of potA and -D proteins in the spermidine-preferential uptake system encoded by pPT104 clone were studied in detail through a combined biochemical and genetic approach. In contrast, the putrescine transport system encoded by pPT71 consisted of one membrane protein (potE protein) haveing twelve transmembrane segments, and was active in both the uptake and excretion of putrescine. The uptake was dependent on membrane potential, and the excretion was due to the exchange reaction between putrescine and ornithine.  相似文献   

7.
Escherichia coli expresses two different membrane-bound respiratory nitrate reductases, nitrate reductase A (NRA) and nitrate reductase Z (NRZ). In this review, we compare the genetic control, biochemical properties and regulation of these two closely related enzyme systems. The two enzymes are encoded by distinct operons located within two different loci on theE. coli chromosome. ThenarGHJI operon, encoding nitrate reductaseA, is located in thechlC locus at 27 minutes, along with several functionally related genes:narK, encoding a nitrate/nitrite antiporter, and thenarXL operon, encoding a nitrate-activated, two component regulatory system. ThenarZYWV operon, encoding nitrate reductase Z, is located in thechlZ locus located at 32.5 minutes, a region which includes anarK homologue,narU, but no apparent homologue to thenarXL operon. The two membrane-bound enzymes have similar structures and biochemical properties and are capable of reducing nitrate using normal physiological substrates. The homology of the amino acid sequences of the peptides encoded by the two operons is extremely high but the intergenic regions share no related sequences. The expression of both thenarGHJI operon and thenarK gene are positively regulated by two transacting factors Fnr and NarL-Phosphate, activated respectively by anaerobiosis and nitrate, while thenarZYWV operon and thenarU gene are constitutively expressed. Nitrate reductase A, which accounts for 98% of the nitrate reductase activity when fully induced, is clearly the major respiratory nitrate reductase inE. coli while the physiological role of the constitutively expressed nitrate reductase Z remains to be defined.Abbreviations NR nitrate reductaseOn leave from Department of Biochemistry and Molecular Biology, The University of Texas Medical school at Houston, Houston, Texas, 77225, USA  相似文献   

8.
9.
TheLac carrier protein inEscherichia coli   总被引:25,自引:0,他引:25  
  相似文献   

10.
Summary Escherichia coli cells form flocs or aggregates by overproducing type 1 pili. When thepil operon is placed under the control of atac orlac promoter-operator sequence, the bacterial cells can be induced to form flocs by adding isopropyl--d-thiogalactopyranoside to the culture medium. This phenomenon of genetically induced flocculation can aid in the downstream processing of biological products. This paper describes the construction of two artificially controlled plasmids which cause cell flocculation. Cell aggregates 50 m in mean diameter were obtained 1 h after the cells were induced.  相似文献   

11.
Expression of theunc genes inEscherichia coli   总被引:7,自引:0,他引:7  
Theunc (or atp) operon ofEscherichia coli comprises eight genes encoding the known subunits of the proton-translocating ATP synthase (H+-ATPase) plus a ninth gene (uncI) of unknown function. The subunit stoichiometry of the H+-ATPase ( 33111a1b2c10–15) requires that the respectiveunc genes be expressed at different rates. This review discusses the experimental methods applied to determining how differential synthesis is achieved, and evaluates the results obtained. It has been found that the primary level of control is translational initiation. The translational efficiencies of theunc genes are determined by primary and secondary mRNA structures within their respective translational initiation regions. The respective rates of translation are matched to the subunit requirements of H+-ATPase assembly. Finally, points of uncertainty remain and experimental strategies which will be important in future work are discussed.  相似文献   

12.
13.
Summary A streptomycete gene coding for extracellular cholesterol oxidase (choA) was subcloned and expressed inEscherichia coli. The pUCO series recombinants were obtained by inserting thechoA gene into the uniqueKpnI site of pUC19 vector. Expression was observed with pUCO192A and pUCO193 constructs in which the cloned gene(s) were aligned with the upstreamlacZ promoter. Isopropyl -d-thioglucopyranoside (IPTG) enhanced this expression up to 2.5-fold. Specific Cho activity in the cell extracts of the stable pUCO193 transformant were 0.004 U and 0.007 U per mg protein without and with IPTG induction, respectively. Cho activity was detected in the spent medium of this culture, suggesting possible secretion of the enzyme.  相似文献   

14.
TwoEscherichia coli clones expressingMycobacterium tuberculosis antigens were isolated from a gene-bank in the plasmid vector pBR 325. ‘Western blot’ analysis revealed the presence of a unique protein band of molecular weight 68,000 and 38,000, respectively in cellextracts from each clone. The 68,000 dalton antigen was found to be expressed onEscherichia coli outer surface. Plasmid DNA from a third clone could confer leucine independence on two differentleu B mutants ofEscherichia coli but not on mutants in otherleu genes, pointing to the possibility ofgenetic complementation. Thus,Mycobacterium tuberculosis DNA is capable of expression inEscherichia coli.  相似文献   

15.
DNA fromChlamydia psittaci was partially digested with Sau 3A and cloned into the lambda bacteriophage derivative vector Charon 30. From this bank about 30 of 1500 recombinants reacted with rabbit anti-C. psittaci serum. Fourteen of these clones expressed antigens varying between 15 and 76 kilodaltons (kd) as revealed by SDS-PAGE and immunoblotting. Two recombinants, expressing 27-kd and 72-kd+76-kd antigens, respectively, were further analyzed by immunoblotting with rabbit antiserum and sera from humans with different chlamydial infections. Partial restriction endonuclease cleavage of these clones showed 10 and 13 kilobases inserts, respectively.  相似文献   

16.
Feil  R.  Bigl  M.  Ruth  P.  Hofmann  F. 《Molecular and cellular biochemistry》1993,127(1):71-80
Cyclic GMP-dependent protein kinase (cGMP kinase) is involved in the relaxation of smooth muscle. The enzyme has been cloned and expressed in eukaryotic cell lines but so far not in prokaryotic cells. Three vectors were constructed for the expression of I cGMP kinase inEscherichia coli. Transformation with the pET3a/cgk vector which uses the T7 RNA polymerase/promotor system resulted in efficient accumulation of cGMP kinase. Most of the protein was in an insoluble and catalytic inactive form. Various solubilization and refolding conditions did not yield an active enzyme. A small fraction of the cGMP kinase was present in the soluble cell extract. This fraction bound cGMP with high affinity but had no cGMP stimulated kinase activity. To prevent aggregation two additional vectors were constructed. (I) A bacterial leader sequence, which directs the export of proteins into the periplasmic space, was fused to the aminoterminus of the cGMP kinase. (II) A gram/gram+ shuttle vector for expression under the control of the tac promotor was used. Both constructs directed the synthesis of an isoluble and inactive cGMP kinase. These results suggest that large amounts of cGMP kinase can be expressed inE. coli, but mainly in an isoluble and inactive form. In contrast to eukaryotic cells, bacteria may lack systems for correct protein folding and/or posttranslational modification that are crucial for the productive folding and/or activation of cGMP kinase.  相似文献   

17.
18.
19.
The addition of histone to the medium in the logarithmic phase of growth ofEscherichia coli influences alkaline phosphatase synthesis in two ways: it delays initiation of derepression of synthesis of the enzyme by about 60–80 min and it inhibits its synthesis. The inhibitory effect persists even after removing histone from the medium. In stationary-phase of growth the inhibitory effect of histone is obliterated. From an analysis of the initial kinetics of derepressed alkaline phosphatase synthesis and from previous results (?trbáňová-Ne?inováet al., 1972) it is concluded that histone added toEscherichia coli cells interferes with the synthesis of mRNA for alkaline phosphatase.  相似文献   

20.
The pullulanase gene fromClostridium thermosulfurogenes (DSM 3896) was cloned and expressed inEscherichia coli with pUC18 as cloning vector. Two clones showed expression of amylolytic enzymes which were active at high temperatures. One of the recombinant plasmids (pCT3) containing a 5.3 kbp insert coded for the pullulanase gene; the other (pCT4, 4.4 kbp insert) carried the same-amylase gene as the previously described plasmid pCT2 (2.9 kpb insert, 7). The pullulanase gene was efficiently transcribed inE. coli, apparently using its own promoter; the enzyme was not secreted into the medium. No difference in the temperature optimum and thermostability between the original and the heterologously expressed (inE. coli) enzyme could be found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号