首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Alternative DNA structures that deviate from B-form double-stranded DNA such as G-quadruplex (G4) DNA can be formed by G-rich sequences that are widely distributed throughout the human genome. We have previously shown that Pif1p not only unfolds G4, but also unwinds the downstream duplex DNA in a G4-stimulated manner. In the present study, we further characterized the G4-stimulated duplex DNA unwinding phenomenon by means of single-molecule fluorescence resonance energy transfer. It was found that Pif1p did not unwind the partial duplex DNA immediately after unfolding the upstream G4 structure, but rather, it would dwell at the ss/dsDNA junction with a ‘waiting time’. Further studies revealed that the waiting time was in fact related to a protein dimerization process that was sensitive to ssDNA sequence and would become rapid if the sequence is G-rich. Furthermore, we identified that the G-rich sequence, as the G4 structure, equally stimulates duplex DNA unwinding. The present work sheds new light on the molecular mechanism by which G4-unwinding helicase Pif1p resolves physiological G4/duplex DNA structures in cells.  相似文献   

3.
Enhancement of pneumococcal transfection by protamine sulfate.   总被引:1,自引:0,他引:1       下载免费PDF全文
Protamine sulfate enhanced transfection of Streptococcus pneumoniae by DNA of omega 3 phage by factors as large as 10(5)-fold, provided it was present at the time the cells were added to the DNA. For DNA concentrations well below 1 microgram/ml, the optimum amount of protamine sulfate was near 1 microgram/ml of cells. Higher DNA concentrations required more protamine for maximum effect, and in all cases transfection fell when protamine was in excess. Transformation was not enhanced by low protamine levels and was inhibited by higher levels. A recipient strain with low but finite endonuclease activity and normal transformability showed higher transfection than did the wild type at low DNA concentrations but less than did the wild type at high DNA concentrations. Protamine sulfate enhanced its transfection at low, but not high, DNA concentrations. The behavior of this strain and the enhancement of transfection by protamine sulfate of wild-type cells were each consistent with less cutting of the donor DNA at the cell surface, which is part of the normal entry process in naturally competent gram-positive bacteria. Less cutting would lead to entry of fewer but longer strands that would be more efficient in reconstruction of the 33-megadalton phage replicon. We suggest that in this system protamine enhances transfection by inhibition of the surface nuclease action that is part of the normal entry process.  相似文献   

4.
S G LaBonne  L B Dumas 《Biochemistry》1983,22(13):3214-3219
We sought a protein from yeast that would bind more strongly to single-stranded DNA than to duplex DNA and would stimulate the activity of the major yeast DNA polymerase, but not polymerases from other organisms. We isolated a protein that binds about 200 times more strongly to single-stranded DNA than duplex DNA and stimulates yeast DNA polymerase I activity 4-5-fold. It inhibits synthesis catalyzed by calf thymus DNA polymerase alpha and has little effect on T4 DNA polymerase. This yeast protein, SSB-1, has a molecular weight of approximately 40 000. At apparent saturation there is one protein molecule bound per 40 nucleotides. Protein binding causes the single-stranded DNA molecule to assume a relatively extended conformation. It binds to single-stranded RNA as strongly as to DNA. SSB-1 increases the initial rate of polymerization catalyzed by yeast DNA polymerase I apparently by increasing the processivity of the enzyme. We estimate there are 7500-30 000 molecules of SSB-1 per yeast cell, enough to bind at least 400-1600 nucleotides per replication fork. Thus it is present in sufficient abundance to participate in DNA replication in vivo in the manner suggested by these in vitro experiments.  相似文献   

5.
A variety of chemical agents that are known to induce erythrodifferentiation in the Friend virus-induced murine erythroleukemia (MEL) cell have been suggested to mediate DNA cleavage in cultured cells prior to differentiation. The activation of the nuclear enzyme, ADP-ribosyltransferase, depends upon the presence of single strand breaks in DNA. If dimethyl sulfoxide (Me2SO) causes DNA breakage, it would be expected that the activity of ADP-ribosyltransferase would increase. A study of ADP-ribosyltransferase activity during cell growth indicates that both Me2SO-treated and untreated MEL cells exhibit a similar increase in the enzyme activity but the increase in Me2SO-treated cells is delayed by a few hours. When examined at comparable stages of growth, both treated and untreated cells show almost identical levels of enzyme activity. The present data thus do not support the contention that Me2SO induces DNA breakage in the MEL cells.  相似文献   

6.
7.
The tumor suppressor p53 has two DNA binding domains: a central sequence-specific domain and a C-terminal sequence-independent domain. Here, we show that binding of large but not small DNAs by the C terminus of p53 negatively regulates sequence-specific DNA binding by the central domain. Four previously described mechanisms for activation of specific DNA binding operate by blocking negative regulation. Deletion of the C terminus of p53 activates specific DNA binding only in the presence of large DNA. Three activator molecules (a small nucleic acid, a monoclonal antibody against the p53 C terminus, and a C-terminal peptide of p53) stimulate sequence-specific DNA binding only in the presence of both large DNA and p53 with an intact C terminus. Our findings argue that interactions of the C terminus of p53 with genomic DNA in vivo would prevent p53 binding to specific promoters and that cellular mechanisms to block C-terminal DNA binding would be required.  相似文献   

8.
WHEN an aqueous solution of the pteridine, isoxanthopterin, is incubated with salmon sperm DNA, an unstable association of the pteridine with the DNA can be demonstrated by chromatography on “Sephadex”1. One interesting property of the complex is that the fluorescence of isoxanthopterin is enhanced ten-fold, a phenomenon which has been ascribed, in other cases, to intercalation of a planar heterocycle between base pairs in the DNA double helix2. If such an intimate positioning occurred, it might be possible to disrupt the structure of DNA by using radiant energy of a wavelength (345 nm) which would be absorbed by the pteridine but not by the DNA. In a living organism the result would be expressed as a mutational event, or in the extreme case, cell death. We have tested this hypothesis using a sensitive biological indicator—bacterial transformation—to observe effects at specific gene loci. For experimental convenience, changes in DNA were detected by changes in transforming ability of wild type DNA.  相似文献   

9.
It has long been known that adaptive evolution can occur through genetic mutations in DNA sequence, but it is unclear whether adaptive evolution can occur through analogous epigenetic mechanisms, such as through DNA methylation. If epigenetic variation contributes directly to evolution, species under threat of disease, invasive competition, climate change or other stresses would have greater stores of variation from which to draw. We looked for evidence of natural selection acting on variably methylated DNA sites using population genomic analysis across three climatologically distinct populations of valley oaks. We found patterns of genetic and epigenetic differentiations that indicate local adaptation is operating on large portions of the oak genome. While CHG methyl polymorphisms are not playing a significant role and would make poor targets for natural selection, our findings suggest that CpG methyl polymorphisms as a whole are involved in local adaptation, either directly or through linkage to regions under selection.  相似文献   

10.
Recombinational DNA repair and sister chromatid exchanges   总被引:2,自引:0,他引:2  
We show that a recombinational repair mechanism for DNA lesions can be expected to produce exactly the types of exceptions to the usually observed semiconservative segregation of newly synthetized DNA that have been reported in the literature. This removes the obstacles their occurrence appearance to present to the interpretation that the eukaryote chromosome is mononeme, containing but a single DNA double helix prior to replication. We further note that such a recombinational repair system would generate single sister chromatid exchange (SCE) events but not twin SCE events. This, along with other factors, complicates the interpretation of single: twin ratios in terms of any particular model of eukaryote chromosome structure.  相似文献   

11.
Metnase is a fusion gene comprising a SET histone methyl transferase domain and a transposase domain derived from the Mariner transposase. This fusion gene appeared first in anthropoid primates. Because of its biochemical activities, both histone (protein) methylase and endonuclease, we termed the protein Metnase (also called SETMAR). Metnase methylates histone H3 lysine 36 (H3K36), improves the integration of foreign DNA, and enhances DNA double-strand break (DSB) repair by the non-homologous end joining (NHEJ) pathway, potentially dependent on its interaction with DNA Ligase IV. Metnase interacts with PCNA and enhances replication fork restart after stalling. Metnase also interacts with and stimulates TopoIIα-dependent chromosome decatenation and regulates cellular sensitivity to topoisomerase inhibitors used as cancer chemotherapeutics. Metnase has DNA nicking and endonuclease activity that linearizes but does not degrade supercoiled plasmids. Metnase has many but not all of the properties of a transposase, including Terminal Inverted Repeat (TIR) sequence-specific DNA binding, DNA looping, paired end complex formation, and cleavage of the 5′ end of a TIR, but it cannot efficiently complete transposition reactions. Interestingly, Metnase suppresses chromosomal translocations. It has been hypothesized that transposase activity would be deleterious in primates because unregulated DNA movement would predispose to malignancy. Metnase may have been selected for in primates because of its DNA repair and translocation suppression activities. Thus, its transposase activities may have been subverted to prevent deleterious DNA movement.  相似文献   

12.
REPLICATION of the double stranded DNA genomes of bacteria takes place by a semi-conservative mechanism1, but although autoradiographic studies have confirmed that eukaryotic DNA is replicated semi-conservatively2,3, our lack of knowledge about the structure of the eukaryotic chromosome means that this finding does not prove that the conserved unit is a single polynucleotide strand of DNA. Indirect information supporting the hypothesis that the conserved unit consisted of a single polydeoxyribonucleotide strand has accumulated from transmission studies in chemical mutation experiments. Two phenotypic classes of mutants are readily distinguishable as a result of chemical mutagenesis; mosaic (fractional) mutants and complete (whole body) mutants. Mutation studies assume that the treated gametes contain one DNA polymer per chromosome and that the polymer is made up of two complementary nucleotide strands. With chemical mutagens (excluding acridine dyes) it is probable that only one of the two complementary strands would be chemically altered4. Following fertilization, DNA replication occurs, fixing both the mutational event and its complementary wild type site. The zygote will possess a mutation which will be phenotypically expressed in the adult fly depending on the early morphogenic movements in the fly's development. Assuming that only one strand is altered, the two cell lines would contain a mutant genotype and a wild type genotype. Two genotypically mutant cell lines would arise if two mutational events occur in the opposing polydeoxyribonucleotide strands within the same genie region. In this case, there would be no genotypically wild type cells in the embryo.  相似文献   

13.
A study of sedimentation and buoyant density of Okazaki fragments from mammalian chromosomes along with electron microscopic studies indicate that fragments from about 200 to 1200 nucleotides long may have RNA segments covalently attached. The fragments in some CsCl isopycnic gradients banded in two rather distinct bands. One band corresponds to the density of single-stranded DNA, but the other has a higher buoyant density which could be conferred by a segment of RNA up to 180 nucleotides or more in length. The RNA was not removed by denaturing conditions which separated DNA strands consisting of several thousand nucleotide pairs. When the material of higher buoyant density was spread for electron microscopy under conditions which would extend single-stranded DNA chains, but leave RNA in a coil or bush the chains with a higher buoyant density usually had a bush attached at one end. Under conditions that were thought to favor gap filling over chain elongation near growing forks, the DNA produced by pulse labeling with bromodeoxyuridine had a buoyant density which would indicate substitution to about 15 percent in one chain. If this substitution represents filling of gaps occupied by RNA before the pulse, the segments would be about 180 nucleotides in length assuming about 1,000 nucleotides between each segment.  相似文献   

14.
A DNA methyltransferase of Mr = 140,000 that is active on both unmethylated and hemimethylated DNA substrates has been purified from the murine plasma-cytoma cell line MPC 11. The maximal rate of methylation was obtained with maintenance methylation of hemimethylated Micrococcus luteus or M13 DNAs. At low enzyme concentrations, the highest rate of de novo methylation occurred with single-stranded DNA or relatively short duplex DNA containing single-stranded regions. Strong substrate inhibition was observed with hemimethylated but not unmethylated DNA substrates. Fully methylated single-stranded M13 phage DNA inhibited neither the de novo nor the maintenance reactions, but unmethylated single-stranded M13 DNA strongly inhibited the maintenance reaction. The kinetics observed with hemimethylated and single-stranded substrates could be explained if the enzyme were to bind irreversibly to a DNA molecule and to aggregate if present in molar excess. Such aggregates would be required for activity upon hemimethylated but not single-stranded DNA. For de novo methylation of duplex DNA, single-stranded regions or large amounts of methyltransferase appear to be required. The relative substrate preference for the enzyme is hemimethylated DNA greater than fully or partially single-stranded DNA greater than fully duplex DNA.  相似文献   

15.
Minisatellites, microsatellites, and short random oligonucleotides all uncover highly polymorphic DNA fingerprint patterns in Southern analysis of genomic DNA that has been digested with a restriction enzyme having a 4-bp specificity. The polymorphic nature of the fragments is attributed to tandem repeat number variation of embedded minisatellite sequences. This explains why DNA fingerprint fragments are uncovered by minisatellite probes, but does not explain how it is that they are also uncovered by microsatellite and random oligonucleotide probes. To clarify this phenomenon, we sequenced a large bovine genomic BamHI restriction fragment hybridizing to the Jeffreys 33.6 minisatellite probe and consisting of small and large Sau3A-resistant subfragments. The large Sau3A subfragment was found to have a complex architecture, consisting of two different minisatellites, flanked and separated by stretches of unique DNA. The three unique sequences were characterized by sequence simplicity, that is, a higher than chance occurrence of tandem or dispersed repetition of simple sequence motifs. This complex repetitive structure explains the absence of Sau3A restriction sites in the large Sau3A subfragment, yet provides this subfragment with the ability to hybridize to a variety of probe sequences. It is proposed that a large class of interspered tracts sharing this complex yet simplified sequence structure is found in the genome. Each such tract would have a broad ability to hybridize to a variety of probes, yet would exhibit a dearth of restriction sites. For each restriction enzyme having 4-bp specificity, a subclass of such tracts, completely lacking the corresponding restriction sites, will be present. On digestion with the given restriction enzyme, each such tract would form a large fragment. The largest fragments would be those that contained one or more long minisatellite tracts. Some of these large fragments would be highly polymorphic by virtue of the included minisatellite sequences; by virtue of their complex structure, all would be capable of hybridizing to a wide variety of probes, uncovering a DNA fingerprint pattern.  相似文献   

16.
We describe a statistical method for estimating the effectiveness of a stock enhancement programme using nuclear DNA loci. It is based on knowing the population allele frequencies and the genotypes of the hatchery parents (mother only, or mother and father), and on determining the probability that a wild-born animal will by chance have a genotype consistent with hatchery origin. We show how to estimate the proportion of released animals in the wild population, and its standard error. The method is applied to a data set of eight microsatellite loci in brown tiger prawns (Penaeus esculentus), prior to the start of a possible enhancement programme. We conclude that, for this particular data set, the effectiveness of such an enhancement programme could be quantified accurately if both maternal and paternal genotypes are known, but not if maternal genotypes only are known. Full paternal genotyping would require offspring genotyping and thus would be expensive, but a partly typed paternal genotype from a mass homogenate of offspring would be almost as effective and much cheaper. The experiment would become feasible based on maternal genotypes alone, if a further three typical microsatellite loci could be found to add to the existing panel of eight. The methods detailed should be of interest to any enhancement project that relies on nuclear DNA markers to provide tags.  相似文献   

17.
Proofreading DNA polymerases share common short peptide motifs that bind Mg(2+) in the exonuclease active center; however, hydrolysis rates are not the same for all of the enzymes, which indicates that there are functional and likely structural differences outside of the conserved residues. Since structural information is available for only a few proofreading DNA polymerases, we developed a genetic selection method to identify mutant alleles of the POL3 gene in Saccharomyces cerevisiae, which encode DNA polymerase delta mutants that replicate DNA with reduced fidelity. The selection procedure is based on genetic methods used to identify "mutator" DNA polymerases in bacteriophage T4. New yeast DNA polymerase delta mutants were identified, but some mutants expected from studies of the phage T4 DNA polymerase were not detected. This would indicate that there may be important differences in the proofreading pathways catalyzed by the two DNA polymerases.  相似文献   

18.
In studies of DNA replication in Escherichia coli, an important question concerns the role of the initiator protein DnaA. This protein is known to bind to a specific 9-bp sequence in the origin of replication, but it is not understood how it can recognize another, relatively distant, 13-bp sequence that has no homology to the binding site but is where the DnaA protein serves its catalytic function in the initiation of DNA replication. This effect of DnaA might be achieved by bending of DNA in this region. I have searched for putative binding sites for integration host factor (IHF), a protein known to bend DNA. Here I report the finding of an IHF binding site in the E. coli origin and present direct evidence that IHF binds and causes DNA bending in this region. On the basis of these results I propose a model wherein formation of a higher-order nucleoprotein structure would facilitate the action of DnaA protein in the initiation events.  相似文献   

19.
125I-labeled deoxyuridine (IdUrd) has been used to estimate the turnover of DNA in liver, tail, and hind limb during spontaneous and triiodothyronine-induced metamorphosis. It was found that the total amount of liver DNA remained constant and there was no significant loss of the label from the liver DNA, which would be expected if there was an increase in DNA turnover during metamorphosis. Also, the change in specific activity of liver DNA parallels that of tail DNA during spontaneous metamorphosis. These data suggest that metamorphic transitions in the tadpole liver do not involve significant changes in DNA turnover. It was observed that the incorporation of label into hind limb DNA showed a high variability among individual animals as compared to liver and tail tissue. The data presented suggest that the observed variability is not a random phenomenon but related directly to the rate at which animals will metamorphose.  相似文献   

20.
FtsK is a bacterial protein that translocates DNA in order to transport chromosomes within the cell. During translocation, DNA's double-helical structure might cause a relative rotation between FtsK and the DNA. We used a single-molecule technique to quantify this rotation by observing the supercoils induced into the DNA during translocation of an FtsK complex. We find that FtsK induces approximately 0.07 supercoils per DNA helical pitch traveled. This rate indicates that FtsK does not track along DNA's groove, but it is consistent with our previous estimate of FtsK's step size. We show that this rate of supercoil induction is markedly near to the ideal value that would minimize in vivo disturbance to the chromosomal supercoil density, suggesting an origin for the unusual rotational behavior of FtsK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号