首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yamasaki Y 《Phytochemistry》2003,64(5):935-939
Beta-amylase (EC 3.2.1.2) was isolated from germinating millet (Panicum miliaceum L.) seeds by a procedure that included ammonium sulfate fractionation, chromatography on DEAE-cellulofine and CM-cellulofine, and preparative isoelectric focusing. The enzyme was homogeneous by SDS-PAGE. The M(r) of the enzyme was estimated to be 58,000 based on its mobility on SDS-PAGE and gel filtration with TSKgel G4000SW(XL), which showed that it is composed of a single unit. The isoelectric point of the enzyme was 4.62. The enzyme hydrolyzed malto-oligosaccharides more readily as their degree of polymerization increased, this being strongest for malto-oligosaccharides larger than 13 glucose residues and very weakly for maltotriose. Amylose, amylopectin and soluble starch were the most suitable substrates for the enzyme. While the enzyme showed some activity against native starch by itself, starch digestion was accelerated 2.5-fold using alpha-amylase, pullulanase and alpha-glucosidase. This enzyme appears to be very important for the germination of millet seeds.  相似文献   

2.
Thermostable β-amylase and pullulanase, secreted by the thermophilic anaerobic bacterium Clostridium thermosulfurogenes strain SV2, were purified by salting out with ammonium sulphate, DEAE-cellulose column chromatography, and gel filtration using Sephadex G-200. Maltose was identified as a major hydrolysis product of starch by β-amylase, and maltotriose was identified as a major hydrolysis product of pullulan by pullulanase. The molecular masses of native β-amylase and pullulanase were determined to be 180 and 100 kDa by gel filtration, and 210 and 80 kDa by SDS–PAGE, respectively. The temperature optima of purified β-amylase and pullulanase were 70 and 75°C, respectively, and both enzymes were completely stable at 70°C for 2h. The presence of starch further increased the stability of both the enzymes to 80°C and both displayed a pH activity optimum of 6.0. The starch hydrolysis products formed by β-amylase action had β-anomeric form.  相似文献   

3.
A debranching enzyme was extracted from the endosperm of germinating rice seeds and purified through three steps, namely cyclohexaamylose-coupled Sepharose 6B, Ultrogel AcA-44 and Bio-Gel P-150 column chromatography. This disc-electrophoretically homogeneous enzyme showed a specific activity of 43 units/mg of protein (30°C) with a pH optimum of 5.5. The isoelectric point was 4.9, unlike that (pI 3.5) of debranching enzyme of ungerminated rice seeds. Our enzyme hydrolyzed pullulan rapidly, and glutinous rice starch and waxy corn starch moderately. The enzyme was also able to act on phytoglycogen and glycogen unlike debranching enzymes originating in some plants.  相似文献   

4.
Purification and characterization of pullulanase from Aureobasidium pullulans. Pullulanase was purified by using gel—filtration column then on ion exchange using Q-sepharose column yielding a single peak. Purification was further carried out on SP-sepharose column. Molecular weight of pullulanase from A. pullulans was found to be about 73 KDa on the SDS-PAGE 10%. Native-PAGE 10% showed the activity of pullulanase, using polyacrylamide gel containing pullulan. Hydrolysis products from pullulanase activity with soluble starch, glycogen and pullulan on thin layer chromatography appeared as one band which is maltotriose, while α-amylase with soluble starch and glycogen showed two bands which are maltose and maltotriose but α-amylase gave negative result with pullulan on TLC chromatography only. Pullulanase could degrade α-1,6 glycosidic linkage of the previous substrates, while amylase could degrade α-1,4 glycosidic linkage of glycogen, soluble starch and pullulan. MALDI-Ms was employed to deduce protein sequence of pullulanase.  相似文献   

5.
The extracellular enzymatic activity of a mixed culture of anaerobic marine bacteria enriched on pullulan [alpha(1,6)-linked maltotriose units] was directly assessed with a combination of gel permeation chromatography (GPC) and nuclear magnetic resonance spectroscopy (NMR). Hydrolysis products of pullulan were separated by GPC into three fractions with molecular weights of > or = 10,000, approximately 5,000, and < or = 1,200. NMR spectra of these fractions demonstrated that pullulan was rapidly and specifically hydrolyzed at alpha(1,6) linkages by pullulanase enzymes, most likely type II pullulanase. Although isolated pullulanase enzymes have been shown to hydrolyze pullulan completely to maltotriose (S. H. Brown, H. R. Costantino, and R. M. Kelly, Appl. Environ. Microbiol. 56:1985-1991, 1990; M. Klingeberg, H. Hippe, and G. Antranikian, FEMS Microbiol. Lett. 69:145-152, 1990; R. Koch, P. Zablowski, A. Spreinat, and G. Antranikian, FEMS Microbiol. Lett. 71:21-26, 1990), the smallest carbohydrate detected in the bacterial cultures consisted of two maltotriose units linked through one alpha(1,6) linkage. Either the final hydrolysis step was closely linked to substrate uptake, or specialized porins similar to maltoporin might permit direct transport of large oligosaccharides into the bacterial cell. This is the first report of pullulanase activity among mesophilic marine bacteria. The combination of GPC and NMR could easily be used to assess other types of extracellular enzyme activity in bacterial cultures.  相似文献   

6.
The gene encoding a type I pullulanase from the hyperthermophilic anaerobic bacterium Thermotoga neapolitana (pulA) was cloned in Escherichia coli and sequenced. The pulA gene from T. neapolitana showed 91.5% pairwise amino acid identity with pulA from Thermotoga maritima and contained the four regions conserved in all amylolytic enzymes. pulA encodes a protein of 843 amino acids with a 19-residue signal peptide. The pulA gene was subcloned and overexpressed in E. coli under the control of the T7 promoter. The purified recombinant enzyme (rPulA) produced a 93-kDa protein with pullulanase activity. rPulA was optimally active at pH 5-7 and 80°C and had a half-life of 88 min at 80°C. rPulA hydrolyzed pullulan, producing maltotriose, and hydrolytic activities were also detected with amylopectin, starch, and glycogen, but not with amylose. This substrate specificity is typical of a type I pullulanase. Thin layer chromatography of the reaction products in the reaction with pullulan and aesculin showed that the enzyme had transglycosylation activity. Analysis of the transfer product using NMR and isoamylase treatment revealed it to be α-maltotriosyl-(1,6)-aesculin, suggesting that the enzyme transferred the maltotriosyl residue of pullulan to aesculin by forming α-1,6-glucosidic linkages. Our findings suggest that the pullulanase from T. neapolitana is the first thermostable type I pullulanase which has α-1,6-transferring activity.  相似文献   

7.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

8.
An α-glucosidase (α-d-glucoside glucohydrolase, EC 3.2.1.20) was isolated from germinating millet (Panicum miliaceum L.) seeds by a procedure that included ammonium sulfate fractionation, chromatography on CM-cellulofine/Fractogel EMD SO3, Sephacryl S-200 HR and TSK gel Phenyl-5 PW, and preparative isoelectric focusing. The enzyme was homogenous by SDS-PAGE. The molecular weight of the enzyme was estimated to be 86,000 based on its mobility in SDS-PAGE and 80,000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 8.3. The enzyme readily hydrolyzed maltose, malto-oligosaccharides, and α-1,4-glucan, but hydrolyzed polysaccharides more rapidly than maltose. The Km value decreased with an increase in the molecular weight of the substrate. The value for maltoheptaose was about 4-fold lower than that for maltose. The enzyme preferably hydrolyzed amylopectin in starch, but also readily hydrolyzed nigerose, which has an α-1,3-glucosidic linkage and exists as an abnormal linkage in the structure of starch. In particular, the enzyme readily hydrolyzed millet starch from germinating seeds that had been degraded to some extent.  相似文献   

9.
Wall-bound α-glucosidase (EC 3.2.1.20) has been solubilized from suspension-cultured rice cells with Sumyzyme C and Pectolyase Y-23 and isolated by a procedure including fractionation with ammonium sulfate, Sephadex G-100 column chromatography, CM-cellulose column chroma-tography, Sephadex G-200 column chromatography, and preparative disc gel electrophoresis. The molecular weight of the enzyme was 64,000. The enzyme readily hydrolyzed maltose, maltotriose, and amylose, but hydrolyzed isomaltose and soluble starch more slowly. The Michaelis constant for maltose of the enzyme was estimated to be 0.272 mm. The enzyme produced panose as the main α- glucosyltransferred product from maltose.  相似文献   

10.
A thermostable pullulanase (alpha-dextrin 6-glucanohydrolase [EC 3.2.1.41]) from a newly isolated Bacillus stearothermophilus strain (TRS128) was purified and characterized. The enzyme hydrolyzed (1-->6)-alpha-d-glucosidic linkages of pullulan to produce maltotriose, and the optimum temperature was 65 degrees C. About 90% of the enzyme activity was retained after treatment at 65 degrees C for 60 min. By using pTB522 as a vector plasmid, the pullulanase gene was cloned and expressed in Bacillus subtilis.  相似文献   

11.
Oleosins are amphipathic proteins associated with oil bodies in seeds. We purified the major 16 500 peanut oleosin by preparative SDS–PAGE. Autoradiography after SDS–PAGE separation of the iodinated oleosin revealed covalently bound oligomers with Mr of 21 000, 33 000, 44 000 and 51 000. The strong capacity of these oligomers to form aggregates and to be incorporated into large-sized detergent micelles was demonstrated by gel permeation and isoelectric focusing. A 50% ethanol concentration was necessary to elute the 16 500 oleosin from octyl groups in hydrophobic interaction chromatography showing its natural tendency to interact with lipid acyl chains. This oligomerization behavior in aqueous solution is an indirect reflection of the interactions that occur in the oil body.  相似文献   

12.
Summary A novel thermostable pullulanase, secreted by the thermophilic anaerobic bacterium Clostridium thermosulfurogenes EM1, was purified and characterized. Applying anion exchange chromatography and gel filtration the enzyme was purified 47-fold and had a specific activity of 200 units/mg. The molecular mass of this thermostable enzyme was determined to be 102 000 daltons and consisted of a single subunit. The enzyme was able to attack specifically the -1,6-glycosidic linkages in pullulan and caused its complete hydrolysis to maltotriose. Surprisingly and unlike the enzyme from Klebsiella pneumoniae, the purified enzyme from this anaerobic thermophile exhibited, in addition to its debranching and pullulanase activity, an -1,4 hydrolysing activity as well. By the action of this single polypeptide chain various branched and linear polysaccharides were completely converted to two major products, namely maltose and maltotriose. The K m values of this enzyme for pullulan and amylose were determined to be 1.33 mg/ml and 0.38 mg/ml, respectively. This debranching enzyme displays a temperature optimum at 60°–65° C and a pH optimum at 5.5–6.0. The application of this new class of pullulanase (pullulanase type II) in industry will significantly enhance the starch saccharification process. Offprint requests to: G. Antranikian  相似文献   

13.
Starch debranching enzyme was purified from mung bean ( Vigna radiata ) cotyledons to investigate its properties and developmental pattern during and following germination. A debranching enzyme was purified up to the step where only a doublet of polypeptides with molecular masses of 99 and 101 kDa, respectively, was detected by SDS-PAGE. The enzyme is thought to be a single chain monomer, as the molecular mass of the enzyme determined by gel filtration was 72 kDa. Monoclonal antibodies raised against the purified preparation recognized the doublet, indicating that the two polypeptides have immunological homology to each other. The enzyme preparation showed a high activity with pullulan as a substrate, low activity with soluble starch and amylopectin, and no activity with glycogen. These substrate specificities indicate that the debranching enzyme from mung bean cotyledons is of the pullulanase type. Immunoblotting profiles revealed that the enzyme is present in dry seeds and decreases gradually after imbibition, suggesting the possibility that the pullulanase plays a role in developing mung bean cotyledons.  相似文献   

14.
This paper describes a simple and efficient method of isolation of a plullulanase type I from amylolytic lactic acid bacteria (ALAB). Extracellular pullulanase type I was purified from a cell-free culture supernatant of Lactococcus lactis IBB 500 by using ammonium sulfate fractionation and dialysis (instead of ultrafiltration), and ion-exchange chromatography with CM Sepharose FF followed by gel filtration chromatography with Sephadex G-150 as the final step. A final purification factor of 14.36 was achieved. The molecular mass of the enzyme was estimated as 73.9 kD. The optimum temperature for the enzyme activity was 45°C and the optimum pH was 4.5. Pullulanase activity was increased by addition Co(2+) and completely inhibited by Hg(2+). The enzyme activity was specifically directed toward α-1,6 glycosidic linkages of pullulan giving maltotriose units. Enzymatic hydrolysis of starch and amylose produced a mixture of maltose and maltotriose.  相似文献   

15.
Thermostable Amylolytic Enzymes from a New Clostridium Isolate   总被引:12,自引:9,他引:3       下载免费PDF全文
A new Clostridium strain was isolated on starch at 60°C. Starch, pullulan, maltotriose, and maltose induced the synthesis of α-amylase and pullulanase, while glucose, ribose, fructose, and lactose did not. The formation of the amylolytic enzymes was dependent on growth and occurred predominantly in the exponential phase. The enzymes were largely cell bound during growth of the organism with 0.5% starch, but an increase of the starch concentration in the growth medium was accompanied by the excretion of α-amylase and pullulanase into the culture broth; but also by a decrease of total activity. α-Amylase, pullulanase, and α-glucosidase were active in a broad temperature range (40 to 85°C) and displayed temperature optima for activity at 60 to 70°C. During incubation with starch under aerobic conditions at 75°C for 2 h, the activity of both enzymes decreased to only 90 or 80%. The apparent Km values of α-amylase, pullulanase, and α-glucosidase for their corresponding substrates, starch, pullulan, and maltose were 0.35 mg/ml, 0.63 mg/ml, and 25 mM, respectively.  相似文献   

16.
We have cloned a pullulanase gene from Bacteroides thetaiotaomicron. The pullulanase expressed from this clone in Escherichia coli was cell associated and soluble and had a molecular mass of 72 kilodaltons by gel filtration. Maxicell analysis of proteins coded by the cloned insert showed that a 71.6- to 73.2-kilodalton doublet was associated with pullulanase activity. Thus, the pullulanase is probably a monomer. The cloned pullulanase produced maltotriose as an end product of pullulan digestion. In B. thetaiotaomicron the pullulanase activity was cell associated. Approximately 80% of the activity was soluble, and 16 to 18% was membrane associated. The molecular mass of the soluble pullulanase was 77 kilodaltons by gel filtration. To determine whether the cloned pullulanase gene was essential for pullulan utilization, we used directed insertional mutagenesis to inactivate the B. thetaiotaomicron pullulanase gene. The pullulanase specific activity of the mutant was approximately 45% of that of wild-type B. thetaiotaomicron. However, the pullulanase-negative insertional mutant 95-1 was still able to grow on pullulan at a rate similar to that of wild-type B. thetaiotaomicron. Thus, there must be a second pullulanase in B. thetaiotaomicron.  相似文献   

17.
A novel thermoacidophilic pullulan-hydrolyzing enzyme (PUL) from hyperthermophilic archaeon Thermococcus kodakarensis (TK-PUL) that efficiently hydrolyzes starch under industrial conditions in the absence of any additional metal ions was cloned and characterized. TK-PUL possessed both pullulanase and α-amylase activities. The highest activities were observed at 95 to 100°C. Although the enzyme was active over a broad pH range (3.0 to 8.5), the pH optima for both activities were 3.5 in acetate buffer and 4.2 in citrate buffer. TK-PUL was stable for several hours at 90°C. Its half-life at 100°C was 45 min when incubated either at pH 6.5 or 8.5. The Km value toward pullulan was 2 mg ml−1, with a Vmax of 109 U mg−1. Metal ions were not required for the activity and stability of recombinant TK-PUL. The enzyme was able to hydrolyze both α-1,6 and α-1,4 glycosidic linkages in pullulan. The most preferred substrate, after pullulan, was γ-cyclodextrin, which is a novel feature for this type of enzyme. Additionally, the enzyme hydrolyzed a variety of polysaccharides, including starch, glycogen, dextrin, amylose, amylopectin, and cyclodextrins (α, β, and γ), mainly into maltose. A unique feature of TK-PUL was the ability to hydrolyze maltotriose into maltose and glucose.  相似文献   

18.
Summary A new thermophilic Bacillus strain 3183 (ATCC 49341) was isolated from hot-spring sediments. The organism grew on pullulan as a carbon source and showed optimum pH and temperature at pH 5.5 and 62° C, respectively, for growth. The strain reduced nitrate to nitrite both aerobically and anaerobically. It produced extracellular thermostable pullulanase and saccharidase activities which degraded pullulan and starch into maltotriose, maltose, and glucose. Medium growth conditions for pullulanase production were optimized. The optimum pH and temperature for pullulanase activity were at pH 6.0 and 75° C, respectively. The enzyme was stable at pH 5.5-7.0 and temperature up to 70° C in the absence of substrate. The K m for pullulan at pH 6.0 and 75° C was 0.4 mg/ml. The pullulanase activity was stimulated and stabilized by Ca2+. It was inhibited by ethylenediaminetetraacetate (EDTA), beta and gamma-cyclodextrins but not by alpha-cyclodextrin and reagents that inhibit essential enzyme SH-groups. Offprint requests to: B. C. Saha  相似文献   

19.
The gene encoding a thermoactive pullulanase from the hyperthermophilic anaerobic archaeon Desulfurococcus mucosus (apuA) was cloned in Escherichia coli and sequenced. apuA from D. mucosus showed 45.4% pairwise amino acid identity with the pullulanase from Thermococcus aggregans and contained the four regions conserved among all amylolytic enzymes. apuA encodes a protein of 686 amino acids with a 28-residue signal peptide and has a predicted mass of 74 kDa after signal cleavage. The apuA gene was then expressed in Bacillus subtilis and secreted into the culture fluid. This is one of the first reports on the successful expression and purification of an archaeal amylopullulanase in a Bacillus strain. The purified recombinant enzyme (rapuDm) is composed of two subunits, each having an estimated molecular mass of 66 kDa. Optimal activity was measured at 85 degrees C within a broad pH range from 3.5 to 8.5, with an optimum at pH 5.0. Divalent cations have no influence on the stability or activity of the enzyme. RapuDm was stable at 80 degrees C for 4 h and exhibited a half-life of 50 min at 85 degrees C. By high-pressure liquid chromatography analysis it was observed that rapuDm hydrolyzed alpha-1,6 glycosidic linkages of pullulan, producing maltotriose, and also alpha-1,4 glycosidic linkages in starch, amylose, amylopectin, and cyclodextrins, with maltotriose and maltose as the main products. Since the thermoactive pullulanases known so far from Archaea are not active on cyclodextrins and are in fact inhibited by these cyclic oligosaccharides, the enzyme from D. mucosus should be considered an archaeal pullulanase type II with a wider substrate specificity.  相似文献   

20.
This paper describes a simple and efficient method of isolation of a plullulanase type I from amylolytic lactic acid bacteria (ALAB). Extracellular pullulanase type I was purified from a cell-free culture supernatant of Lactococcus lactis IBB 500 by using ammonium sulfate fractionation and dialysis (instead of ultrafiltration), and ion-exchange chromatography with CM Sepharose FF followed by gel filtration chromatography with Sephadex G-150 as the final step. A final purification factor of 14.36 was achieved. The molecular mass of the enzyme was estimated as 73.9 kD. The optimum temperature for the enzyme activity was 45°C and the optimum pH was 4.5. Pullulanase activity was increased by addition Co2+ and completely inhibited by Hg2+. The enzyme activity was specifically directed toward α-1,6 glycosidic linkages of pullulan giving maltotriose units. Enzymatic hydrolysis of starch and amylose produced a mixture of maltose and maltotriose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号