首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

2.
Modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) plays a fundamental role in cell biology. As a consequence, proteomics-based efforts were developed to characterize proteins that are modified by Ub or Ubls. A more focused functional proteomics strategy relies on active-site probes based on the Ub/Ubl scaffold, which specifically targets Ub/Ubl-processing enzymes. Activity-based profiling with such tools led to the identification of novel gene products with Ub/Ubl-processing activity and uncovered novel control mechanisms regulating their activity. This review discusses recent advances in chemistry-based functional proteomics applications, and how this information can provide a framework for drug development against Ub/Ubl-processing enzymes.  相似文献   

3.
Ovarian clear cell carcinoma (OCCC) is an understudied poor prognosis subtype of ovarian cancer lacking in effective targeted therapies. Efforts to define molecular drivers of OCCC malignancy may lead to new therapeutic targets and approaches. Among potential targets are secreted proteases, enzymes which in many cancers serve as key drivers of malignant progression. Here, we found that inhibitors of trypsin-like serine proteases suppressed malignant phenotypes of OCCC cell lines. To identify the proteases responsible for malignancy in OCCC, we employed activity-based protein profiling to directly analyze enzyme activity. We developed an activity-based probe featuring an arginine diphenylphosphonate warhead to detect active serine proteases of trypsin-like specificity and a biotin handle to facilitate affinity purification of labeled proteases. Using this probe, we identified active trypsin-like serine proteases within the complex proteomes secreted by OCCC cell lines, including two proteases in common, tissue plasminogen activator and urokinase-type plasminogen activator. Further interrogation of these proteases showed that both were involved in cancer cell invasion and proliferation of OCCC cells and were also detected in in vivo models of OCCC. We conclude the detection of tissue plasminogen activator and urokinase-type plasminogen activator as catalytically active proteases and significant drivers of the malignant phenotype may point to these enzymes as targets for new therapeutic strategies in OCCC. Our activity-based probe and profiling methodology will also serve as a valuable tool for detection of active trypsin-like serine proteases in models of other cancers and other diseases.  相似文献   

4.
活性蛋白质表达谱(activity-based protein profiling, ABPP)分析技术是功能蛋白质组学的一种策略,属于化学蛋白质组学的一部分.它借助化学小分子从功能角度直接切入蛋白质组的研究,能够直接对蛋白质组中感兴趣的靶酶蛋白的活性进行检测,为药物的发现提供强有力的支持.因此,ABPP技术被认为是基于功能的新一代蛋白质组学技术.随着ABPP分析技术和方法的不断成熟,其应用领域也不断扩展.最近一系列研究表明, 今后ABPP分析技术可能成为病毒学研究的又一重要武器.本文综述了ABPP分析技术的基本原理及其在病毒学研究中的应用.  相似文献   

5.
蛋白质组学研究中的双向电泳技术   总被引:26,自引:0,他引:26  
蛋白质组学研究已经成为后基因组时代的研究热点,其两大支柱是双向凝胶电泳技术和生物质谱技术。尽管双向电泳技术近几年已经取得了突破性进展,是当前蛋白质分离的最常用技术,但其本身还有一些难以克服的问题。随着质谱技术的快速发展,双向电泳逐渐成为蛋白质组学研究的瓶颈。本综述双向电泳主要技术步骤的现状、存在问题及其改进方向。  相似文献   

6.
Tissue microarray (TMA) technology provides a possibility to explore protein expression patterns in a multitude of normal and disease tissues in a high-throughput setting. Although TMAs have been used for analysis of tissue samples, robust methods for studying in vitro cultured cell lines and cell aspirates in a TMA format have been lacking. We have adopted a technique to homogeneously distribute cells in an agarose gel matrix, creating an artificial tissue. This enables simultaneous profiling of protein expression in suspension- and adherent-grown cell samples assembled in a microarray. In addition, the present study provides an optimized strategy for the basic laboratory steps to efficiently produce TMAs. Presented modifications resulted in an improved quality of specimens and a higher section yield compared with standard TMA production protocols. Sections from the generated cell TMAs were tested for immunohistochemical staining properties using 20 well-characterized antibodies. Comparison of immunoreactivity in cultured dispersed cells and corresponding cells in tissue samples showed congruent results for all tested antibodies. We conclude that a modified TMA technique, including cell samples, provides a valuable tool for high-throughput analysis of protein expression, and that this technique can be used for global approaches to explore the human proteome.  相似文献   

7.
Summary. In the postgenomic era new technologies are emerging for global analysis of protein function. The introduction of active site-directed chemical probes for enzymatic activity profiling in complex mixtures, known as activity-based proteomics has greatly accelerated functional annotation of proteins. Here we review probe design for different enzyme classes including serine hydrolases, cysteine proteases, tyrosine phosphatases, glycosidases, and others. These probes are usually detected by their fluorescent, radioactive or affinity tags and their protein targets are analyzed using established proteomics techniques. Recent developments, such as the design of probes for in vivo analysis of proteomes, as well as microarray technologies for higher throughput screenings of protein specificity and the application of activity-based probes for drug screening are highlighted. We focus on biological applications of activity-based probes for target and inhibitor discovery and discuss challenges for future development of this field.  相似文献   

8.
Stable isotope labelling in combination with mass spectrometry has emerged as a powerful tool to identify and relatively quantify thousands of proteins within complex protein mixtures. Here we describe a novel method, termed isotope-coded protein label (ICPL), which is capable of high-throughput quantitative proteome profiling on a global scale. Since ICPL is based on stable isotope tagging at the frequent free amino groups of isolated intact proteins, it is applicable to any protein sample, including extracts from tissues or body fluids, and compatible to all separation methods currently employed in proteome studies. The method showed highly accurate and reproducible quantification of proteins and yielded high sequence coverage, indispensable for the detection of post-translational modifications and protein isoforms. The efficiency (e.g. accuracy, dynamic range, sensitivity, speed) of the approach is demonstrated by comparative analysis of two differentially spiked proteomes.  相似文献   

9.
蛋白质组研究中分离新技术与新方法   总被引:6,自引:0,他引:6  
对于蛋白质组的研究离不开分析技术的支撑。由于样品及其基质的复杂性,为了实现蛋白质的高通量、高灵敏度、快速分析鉴定,必须发展与之匹配的新技术与新方法。多维高效液相色谱/毛细管电泳技术,部分弥补了传统2D PAGE的不足,近年来,在蛋白质分离鉴定方面取得了最令人瞩目的成绩。本文分别从多维液相色谱分离技术、多维毛细管电泳蛋白质分离平台、微柱液相-毛细管电泳联用技术、极端pH蛋白质的分离分析和蛋白质的在线富集技术等方面对蛋白质组学研究中在新技术与新方法方面近期取得的成果加以系统阐述。  相似文献   

10.
泛素(ubiquitin,Ub)作为一种重要的翻译后修饰,参与调控细胞内几乎所有的生命活动。泛素化通常由E1s、E2s、E3s以及去泛素化酶(deubiquitinating enzyme,DUBs)相互协调完成,并在底物蛋白上形成不同链长、不同连接类型的泛素链。这些泛素链可以产生多样的拓扑结构,被含有泛素结合域(Ub binding domain,UBD)的不同识别蛋白结合,进而传递不同的信号。泛素化过程或者识别蛋白的读取一旦发生错误,对细胞来说都可能是灾难性的。为深入了解泛素相关的生理机制,多种泛素探针被设计与合成,用于对目标蛋白酶或识别蛋白进行标记和监测。本综述总结了当前的泛素探针(包括基于活性和基于亲和性的探针)的最新发展,并详细阐述了它们的合成策略。进一步介绍了细胞穿梭型泛素探针在活细胞内的最新应用。  相似文献   

11.
郝运伟  姜颖  贺福初 《遗传》2007,29(7):779-784
随着蛋白质组学概念的提出以及诸如血浆蛋白质组等有影响力的计划开展, 蛋白质组研究迅速发展起来, 这门基于分析化学和物理化学的领域也逐渐为广大生物学家所关注, 同时也相应地在细胞生物学、生物化学等领域的研究中崭露头角。蛋白质表达量的变化以及各种各样的修饰无不反映出机体对环境变化的应激和自身功能的需要。因此, 定量蛋白质组和修饰化的蛋白质组成为了目前蛋白质组研究的重要领域之一。文章着重从采用化学标记实现定量和修饰化研究这个角度来介绍近些年来在这方面取得的进展, 希望对生物学领域的研究有所借鉴。  相似文献   

12.
In modern science proteomic analysis is inseparable from other fields of systemic biology. Possessing huge resources quantitative proteomics operates colossal information on molecular mechanisms of life. Advances in proteomics help researchers to solve complex problems of cell signaling, posttranslational modification, structure and funciotnal homology of proteins, molecular diagnostics etc. More than 40 various methods have been developed in proteomics for quantitative analysis of proteins. Although each method is unique and has certain advantages and disadvantages all these use various isotope labels (tags). In this review we will consider the most popular and effective methods employing both chemical modifications of proteins and also metabolic and enzymatic methods of isotope labeling.  相似文献   

13.
Traditional proteomics methodology allows global analysis of protein abundance but does not provide information on the regulation of protein activity. Proteases, in particular, are known for their multilayered post-translational activity regulation that can lead to a significant difference between protease abundance levels and their enzyme activity. To address these issues, the field of activity-based proteomics has been established in order to characterize protein activity and monitor the functional regulation of enzymes in complex proteomes. In this review, we present structural features of activity-based probes for proteases and discuss their applications in proteomic profiling of various catalytic classes of proteases.  相似文献   

14.
《Molecular cell》2023,83(10):1725-1742.e12
  1. Download : Download high-res image (201KB)
  2. Download : Download full-size image
  相似文献   

15.
Two-dimensional gel electrophoresis (2-DE) is a gel-based technique widely used for analyzing the protein composition of biological samples. It is capable of resolving complex mixtures containing more than a thousand protein components into individual protein spots through the coupling of two orthogonal biophysical separation techniques: isoelectric focusing (first dimension) and polyacrylamide gel electrophoresis (second dimension). 2-DE is ideally suited for analyzing the entire expressed protein complement of a bacterial cell: its proteome. Its relative simplicity and good reproducibility have led to 2-DE being widely used for exploring proteomics within a wide range of environmental and medically-relevant bacteria. Here we give a broad overview of the basic principles and historical development of gel-based proteomics, and how this powerful approach can be applied for studying bacterial biology and physiology. We highlight specific 2-DE applications that can be used to analyze when, where and how much proteins are expressed. The links between proteomics, genomics and mass spectrometry are discussed. We explore how proteomics involving tandem mass spectrometry can be used to analyze (post-translational) protein modifications or to identify proteins of unknown origin by de novo peptide sequencing. The use of proteome fractionation techniques and non-gel-based proteomic approaches are also discussed. We highlight how the analysis of proteins secreted by bacterial cells (secretomes or exoproteomes) can be used to study infection processes or the immune response. This review is aimed at non-specialists who wish to gain a concise, comprehensive and contemporary overview of the nature and applications of bacterial proteomics.  相似文献   

16.
Mass spectrometry technologies for proteomics.   总被引:1,自引:0,他引:1  
In the late 1980s, the advent of soft ionization techniques capable of generating stable gas phase ions from thermally unstable biomolecules, namely matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), laid the way for the development of a set of powerful alternatives to the traditional Edman chemistry for the structural characterization of peptides and proteins. The rapid protein identification capabilities that, coupled with two-dimensional gel electrophoresis, provided insights into all sorts of biological systems since the dawn of proteomics and have been exploited in the last few years for the development of more powerful and automatable gel-free strategies, mainly based on multidimensional chromatographic separations of peptides from proteolytic digests. In parallel to the evolution of ion sources, mass analysers and scan modes, the invention of new elegant biochemical strategies to fractionate or simplify highly complex mixtures, or to introduce isotopic labels in peptides in a variety of ways now makes also possible large-scale, high-coverage quantitative studies in a wide dynamic range. In this review, we provide the fundamental concepts of mass spectrometry (MS) and describe the technological progress of MS-based proteomics since its earliest days. Representative literature examples of their true power, either when employed as exploratory or as targeted techniques, is provided as well.  相似文献   

17.
From genomics to proteomics   总被引:1,自引:0,他引:1  
  相似文献   

18.
Macroautophagy/autophagy is an evolutionarily well-conserved cellular degradative process with important biological functions that is closely implicated in health and disease. In recent years, quantitative mass spectrometry-based proteomics and chemical proteomics have emerged as important tools for the study of autophagy, through large-scale unbiased analysis of the proteome or through highly specific and accurate analysis of individual proteins of interest. At present, a variety of approaches have been successfully applied, including (i) expression and interaction proteomics for the study of protein post-translational modifications, (ii) investigating spatio-temporal dynamics of protein synthesis and degradation, and (iii) direct determination of protein activity and profiling molecular targets in the autophagic process. In this review, we attempted to provide an overview of principles and techniques relevant to the application of quantitative and chemical proteomics methods to autophagy, and outline the current landscape as well as future outlook of these methods in autophagy research.  相似文献   

19.
经典的蛋白质组学研究方法包括IEF/SDS-PAGE双向电泳和质谱技术的联用,但由于IEF的一些不足,限制了其应用范围。对角线电泳是蛋白质组学研究中的一项特殊分离技术,由于其原理与IEF/SDS-PAGE不同,正逐渐成为蛋白质组学中电泳分离技术的重要补充,特别是在膜蛋白和蛋白质相互关系的研究中将起到重要作用。本文综述了对角线双向电泳技术的特点、发展和在蛋白质组学研究中的最新进展,比较了双向电泳和对角线电泳的优缺点,展望了对角线电泳在蛋白质组学研究中的应用前景。  相似文献   

20.
从基因组学到功能蛋白质组学的研究   总被引:1,自引:0,他引:1  
人类基因组草图绘制的完成,标志着生命科学已实质性地跨入了后基因组时代,研究重心已从揭示生命的所有遗传信息转移到在分子整体水平对功能的研究[1]。这种转向表明目前已进入功能基因组学(functional genom ics)以及随之产生的功能蛋白质组学(functional proteomics)等新学科领域的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号