首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell wall analysis   总被引:3,自引:0,他引:3  
The cell wall is a rigid structure essential for survival of the fungal cell. Because of its absence in mammalian cells, the cell wall is an attractive target for antifungal agents. Thus, for different reasons, it is important to know how the cell wall is synthesized and how different molecules regulate that synthesis. The Schizosaccharomyces pombe cell wall is mainly formed by glucose polysaccharides and some galactomannoproteins. Here, we describe a fast and reliable method to analyze changes in S. pombe cell wall composition by using specific enzymatic degradation and chemical treatment of purified cell walls. This approach provides a powerful means to analyze changes in (1,3)beta-glucan and (1,3)alpha-glucan, two main polysaccharides present in fungal cell walls. Analysis of cell wall polymers will be useful to search for new antifungal drugs that may inhibit cell wall biosynthesis and/or alter cell wall structure.  相似文献   

2.
The structure and synthesis of the fungal cell wall   总被引:11,自引:0,他引:11  
The fungal cell wall is a dynamic structure that protects the cell from changes in osmotic pressure and other environmental stresses, while allowing the fungal cell to interact with its environment. The structure and biosynthesis of a fungal cell wall is unique to the fungi, and is therefore an excellent target for the development of anti-fungal drugs. The structure of the fungal cell wall and the drugs that target its biosynthesis are reviewed. Based on studies in a number of fungi, the cell wall has been shown to be primarily composed of chitin, glucans, mannans and glycoproteins. The biosynthesis of the various components of the fungal cell wall and the importance of the components in the formation of a functional cell wall, as revealed through mutational analyses, are discussed. There is strong evidence that the chitin, glucans and glycoproteins are covalently cross-linked together and that the cross-linking is a dynamic process that occurs extracellularly.  相似文献   

3.
4.
BACKGROUND AND AIMS: Bamboo culms have excellent physical and mechanical properties, which mainly depend on their fibre content and anatomical structure. One of the features which is known to contribute to the high tensile strength in bamboo is the multilayered structure of the fibre cell wall. The aim of this study was to characterize the development of the layered structure in fibre cell walls of developing and maturing culms of Dendrocalamus asper. METHODS: Cell wall development patterns were investigated in phloem fibre caps of vascular bundles in the inner culm wall areas of Dendrocalamus asper of three different age classes (<6 months old, 1 year old, 3 years old). A combination of light microscopy and image analysis techniques were employed to measure cell wall thickness and to determine number of cell wall layers, as well as to describe the layering structure of fibre walls. Two-dimensional maps showing the distribution pattern of fibres according to the number of cell wall layers were produced. KEY RESULTS: The cell walls of fibres in phloem fibre caps located in the inner part of the culm wall of D. asper developed rapidly during the first year of growth. Six different fibre types could be distinguished based upon their cell wall layering and all were already present in the young, 1-year-old culm. In the mature stage (3 years of age) the multilayering was independent of the cell wall thickness and even the thinner-walled fibres could have a large number of wall layers. The multilayered nature of cell wall structure varied considerably between individual cells and was not exclusively related to the cell wall thickness. Nevertheless, fibres at the periphery of the fibre bundles and immediately adjacent to the phloem elements exhibited a consistent and high degree of layering in their cell walls. CONCLUSIONS: The multilayered structure of fibre cell walls was formed mainly during the first year of growth by the deposition of new wall layers of variable thickness, resulting in a high degree of heterogeneity in the layering patterns amongst individual fibres. A degree of 'order' in the distribution of multilayered fibres within the caps does exist, however, with multilayered cell walls common in fibres adjacent to phloem elements and around the edge of the fibre cap. These findings confirm the observations, primarily in Phyllostachys viridi-glaucescens. The layering structure was not found to be specifically related to the thickness of the cell wall.  相似文献   

5.
How cell wall elasticity, plasticity, and time‐dependent extension (creep) relate to one another, to plant cell wall structure and to cell growth remain unsettled topics. To examine these issues without the complexities of living tissues, we treated cell‐free strips of onion epidermal walls with various enzymes and other agents to assess which polysaccharides bear mechanical forces in‐plane and out‐of‐plane of the cell wall. This information is critical for integrating concepts of wall structure, wall material properties, tissue mechanics and mechanisms of cell growth. With atomic force microscopy we also monitored real‐time changes in the wall surface during treatments. Driselase, a potent cocktail of wall‐degrading enzymes, removed cellulose microfibrils in superficial lamellae sequentially, layer‐by‐layer, and softened the wall (reduced its mechanical stiffness), yet did not induce wall loosening (creep). In contrast Cel12A, a bifunctional xyloglucanase/cellulase, induced creep with only subtle changes in wall appearance. Both Driselase and Cel12A increased the tensile compliance, but differently for elastic and plastic components. Homogalacturonan solubilization by pectate lyase and calcium chelation greatly increased the indentation compliance without changing tensile compliances. Acidic buffer induced rapid cell wall creep via endogenous α‐expansins, with negligible effects on wall compliances. We conclude that these various wall properties are not tightly coupled and therefore reflect distinctive aspects of wall structure. Cross‐lamellate networks of cellulose microfibrils influenced creep and tensile stiffness whereas homogalacturonan influenced indentation mechanics. This information is crucial for constructing realistic molecular models that define how wall mechanics and growth depend on primary cell wall structure.  相似文献   

6.
The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.  相似文献   

7.
If walls could talk   总被引:1,自引:0,他引:1  
The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.  相似文献   

8.
The major cell wall polymer of Streptomyces sp. VKM Ac-2125, the causative agent of potato scab, is galactomannan with the repeating unit of the following structure: [carbohydrate structure in text] The polysaccharide with such a structure is found in the bacterial cell wall for the first time. The cell wall also contains small amount of a teichoic acid of the poly(glycerol phosphate) type and 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid.  相似文献   

9.
Plant tissue is composed of many different types of cells. Plant cells required to withstand mechanical pressure, such as vessel elements and fibers, have a secondary cell wall consisting of polysaccharides and lignin, which strengthen the cell wall structure and stabilize the cell shape. Previous attempts to alter the properties of the cell wall have mainly focused on reducing the amount of lignin or altering its structure in order to ease its extraction from raw woody materials for the pulp and paper and biorefinery industries. In this work, we propose the in vivo modification of the cell wall structure and mechanical properties by the introduction of resilin, an elastic protein that is able to crosslink with lignin monomers during cell wall synthesis. The effects of resilin were studied in transgenic eucalyptus plants. The protein was detected within the cell wall and its expression led to an increase in the elastic modulus of transgenic stems. In addition, transgenic stems displayed a higher yield point and toughness, indicating that they were able to absorb more energy before breaking.  相似文献   

10.
11.
刘佩佩  张耿  李晓娟 《植物学报》2021,56(2):191-200
果胶作为植物细胞壁多糖之一,其结构和功能非常复杂。果胶主要由同型半乳糖醛酸聚糖(HG)、鼠李半乳糖醛酸聚糖I (RGI)和鼠李半乳糖醛酸聚糖II (RGII)组成。果胶类成分在维持细胞壁结构的完整性以及细胞间黏附和信号转导等方面发挥重要作用。研究果胶类成分的结构、分布和功能,对理解细胞壁高级结构的构建和功能具有重要意义...  相似文献   

12.
Plant cell wall is an example of a widespread natural supramolecular structure: its components are considered to be the most abundant organic compounds renewable by living organisms. Plant cell wall includes numerous components, mainly polysaccharidic; its formation is largely based on carbohydrate-carbohydrate interactions. In contrast to the extracellular matrix of most other organisms, the plant cell compartment located outside the plasma membrane is so structured that has been named “wall”. The present review summarizes data on the mechanisms of formation of this supramolecular structure and considers major difficulties and results of research. Existing approaches to the study of interactions between polysaccharides during plant cell wall formation have been analyzed, including: (i) characterization of the structure of natural polysaccharide complexes obtained during cell wall fractionation; (ii) analysis of the interactions between polysaccharides “at mixing in a tube”; (iii) study of the interactions between isolated individual plant cell wall matrix polysaccharides and microfibrils formed by cellulose-synthesizing microorganisms; and (iv) investigation of cell wall formation and modification directly in plant objects. The key stages in formation of plant cell wall supramolecular structure are defined and characterized as follows: (i) formation of cellulose microfibrils; (ii) interactions between matrix polysaccharides within Golgi apparatus substructures; (iii) interaction between matrix polysaccharides, newly secreted outside the plasma membrane, and cellulose microfibrils during formation of the latter; (iv) packaging of the formed complexes and individual polysaccharides in cell wall layers; and (v) modification of deposited cell wall layers.  相似文献   

13.
The cell wall integrity (CWI) signalling pathway is necessary to remodel the yeast cell wall during normal morphogenesis and in response to cell surface stress. In the Baker's yeast Saccharomyces cerevisiae, a set of five membrane-spanning sensors, namely Wsc1, Wsc2, Wsc3, Mid2 and Mtl1, detect perturbations in the cell wall and/or the plasma membrane and activate a downstream signal transduction pathway with a central MAP kinase module. As a consequence, the expression of genes whose products are involved in cell wall structure and remodelling is induced. This review summarises our recent results on sensor structure and function, as well as the advances made regarding sensor mechanics.  相似文献   

14.
Models of the primary cell wall are discussed in relation to results obtained by the present authors from studies of the primary cell wall of lupin and mung bean hypocotyls. A structure of the primary cell wall is suggested that differs in several respects from structures already proposed. It has a non-covalent interaction of much of the pectin, hemicellulose and glycoprotein, and a more direct interaction of the glycoprotein and cellulose microfibrils. An idea of scale is introduced through a consideration of degree of polymerization and monomer size of polymers, and of the volume of the cellulose microfibrils. Wall structure is discussed in relation to polymer orientation and elongation of the primary cell wall.  相似文献   

15.
Organic components associated with diatom cell wall silica are important for the formation, integrity, and function of the cell wall. Polysaccharides are associated with the silica, however their localization, structure, and function remain poorly understood. We used imaging and biochemical approaches to describe in detail characteristics of insoluble organic components associated with the cell wall in 5 different diatom species. Results show that an insoluble organic matrix enriched in mannose, likely the diatotepum, is localized on the proximal surface of the silica cell wall. We did not identify any organic matrix embedded within the silica. We also identified a distinct material consisting of glucose polymer with variable localization depending on the species. In some species this component was directly involved in the morphogenesis of silica structure while in others it appeared to be only a structural component of the cell wall. A novel glucose-rich structure located between daughter cells during division was also identified. This work for the first time correlates the structure, composition, and localization of insoluble organic matrices associated with diatom cell walls. Additionally we identified a novel glucose polymer and characterized its role during silica structure formation.  相似文献   

16.
The fungal cell wall is a structure with a high plasticity that protects the cell from different types of environmental stresses including changes in osmotic pressure. In addition to that, the cell wall allows the fungal cell to interact with its environment, since some of its proteins are adhesins and receptors. Some of its components are highly immunogenic. The structure of the fungal cell wall is unique to the fungi, and it is composed of glucan, chitin and glycoproteins. Since humans lack the components present in the cell walls of fungi, this structure is an excellent target for the development of antifungal drugs. Anidulafungin, like the rest of echinocandins acts on beta-1,3-D-glucan synthase inhibiting the formation of beta-1,3-D-glucan and causing, depending on the type of fungus, a fungicidal or either a fungistatic effect.  相似文献   

17.
Levin DE 《Genetics》2011,189(4):1145-1175
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed.  相似文献   

18.
The morphology of yeast cells as it is affected by the glycosidic linkages of constituent glucan was studied. Four different strains of Saccharomyces cerevisiae were studied. A cell wall matrix particle representing the intact original morphology and composed entirely of beta-glucan was prepared. Using prepared cell wall glucan particles, the morphology and cell wall matrix structure were examined. Genetic modification of the cell wall structure during growth results in the alteration of the shape and hydrodnamic volume of the intact cell wall particles. The shape and hydrodynamic volume of the cell wall particles can also be modified by in vitro chemical and enzymatic treatment. The shape factor and hydrodynamic volume of the whole glucan cell wall matrix particles were evaluated quantitatively using a rheological analysis. An increased degree of beta(1 --> 6) cross-linking in the cell wall matrix induces a nearly 2-fold increase in the shape factor and a 10-fold increase in the compression modulus of the glucan particles. The disruption of beta(1 --> 6) glycosidic cross-linking causes the particles to swell by up to 18% of their original volume. This was used as a strategy to isolate a yeast mutant with a high beta(1 --> 6) glycosidic content in the cell wall glucan.  相似文献   

19.
A membrane model of plant cell extension   总被引:2,自引:0,他引:2  
A theory is presented for the mechanics of plant cell wall extension and is based on the analogy of the cell wall with a membrane structure made of material capable of large non-linear deformations. These wall deformations may be elastic, elastic-plastic or visco-elastic. Mathematical analyses of such membrane structures show that there is, generally, a critical internal pressure at which dimensional instability occurs. This instability is characterized by a sudden drop in internal pressure accompanied by a large increase in the physical proportions of the membrane structure. The theory proposes that cell wall extension occurs when the cell turgor pressure reaches this critical instability value. The cell wall thus stretched is fixed by biochemical synthesis of wall material. Osmotic regulation re-establishes the turgor pressure and the instability cycle repeats itself as long as the critical instability pressure of the cell is below the osmotic pressure of the cell contents. Equalization of these pressures stops cell extension. The rate of cell extension depends on the frequency of the instability cycle and is thus dependent on the various rate processes associated with the instability cycle. The theory appears to be able to explain most of the known facts regarding cell extension such as the influence of temperature and the action of some growth substances.  相似文献   

20.
The components and structure of the cell wall of Rhizopus delemar were investigated using purified lytic enzymes, protease and chitosanase from Bacillus R-4 and chitinase II from Streptomyces orientalis. When these enzymes were used individually they only partially lysed the cell wall, but when allowed to react on the cell wall together, a complete lysis was achieved by cooperative action. These modes of action on the cell wall and the chemical and morphological data suggested that the cell wall structure was different in Rhizopus delemar of Zygomycetes from filamentous fungi of Euascomycetes and that its wall structure might be composed mainly of chitin fibers cemented by chitosan and protein or peptides scattered in a mosaic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号