首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
WRN helicase expression in Werner syndrome cell lines   总被引:7,自引:1,他引:7  
Mutations in the chromosome 8p WRN gene cause Werner syndrome (WRN), a human autosomal recessive disease that mimics premature aging and is associated with genetic instability and an increased risk of cancer. All of the WRN mutations identified in WRN patients are predicted to truncate the WRN protein with loss of a C-terminal nuclear localization signal. However, many of these truncated proteins would retain WRN helicase and/or nuclease functional domains. We have used a combination of immune blot and immune precipitation assays to quantify WRN protein and its associated 3′→5′ helicase activity in genetically characterized WRN patient cell lines. None of the cell lines from patients harboring four different WRN mutations contained detectable WRN protein or immune-precipitable WRN helicase activity. Cell lines from WRN heterozygous individuals contained reduced amounts of both WRN protein and helicase activity. Quantitative immune blot analyses indicate that both lymphoblastoid cell lines and fibroblasts contain ~6 × 104 WRN molecules/cell. Our results indicate that most WRN mutations result in functionally equivalent null alleles, that WRN heterozygote effects may result from haploinsufficiency and that successful modeling of WRN pathogenesis in the mouse or in other model systems will require the use of WRN mutations that eliminate WRN protein expression.  相似文献   

2.
3.
The accelerated ageing disease Werner Syndrome (WRN) is characterized by pronounced atherosclerosis. Here, we investigated the influence of WRN downregulation on the functionality of non-replicating human endothelial cells. RNAi-mediated downregulation of WRN reduces cell motility and enhances the expression of factors regulating adhesion, inflammation, hemostasis and vasomotor tone. Moreover, WRN influences endothelial barrier function and Ca2+-release, while cell adhesion, Dil-acLDL-uptake and the mRNA expression of NO-synthases (eNOS, iNOS) remained unaffected. Regarding motility, we propose that WRN affects Rac1/FAK/ß1-integrin-related mechanisms regulating cell polarity and directed motility. Since oxidative DNA base damage contributes to aging and atherosclerosis and WRN affects DNA repair, we investigated whether downregulation of base excision repair (BER) factors mimics the effects of WRN knock-down. Indeed, downregulation of particular WRN-interacting base excision repair (BER) proteins (APE1, NEIL1, PARP1) imitates the inhibitory effect of WRN on motility. Knock-down of OGG1, which does not interact with WRN, does not influence motility but increases the mRNA expression of E-selectin, ICAM, VCAM, CCL2 and VEGFR and stimulates adhesion. Thus, individual BER factors themselves differently impact endothelial cell functionality and homeostasis. Impairment of endothelial activities caused by genotoxic stressor (tBHQ) remained largely unaffected by WRN. Summarizing, both WRN, WRN-associated BER proteins and OGG1 promote the maintenance of endothelial cell homeostasis, thereby counteracting the development of ageing-related endothelial malfunction in non-proliferating endothelial cells.  相似文献   

4.
Werner syndrome helicase (WRN) was found in the centrosome of human cells, both in interphase and in mitosis. Nuclear DNA helicase II (NDH II), also called RNA helicase A (RHA), an interaction partner of WRN, was also present in the centrosome. NDH II localized to the centrosome in interphase but left the centrosome with the ongoing progression of mitosis. The localization of NDH II to the centrosome was hardly affected by cytochalasin D that depolymerizes actin filaments. In contrast, treatment by the microtubules disrupting agent nocodazole strikingly detached NDH II from the centrosome, which was in contrast to WRN that remained there under this condition. Treatment of cells with the DNA damaging agent 4-nitroquinoline-1-oxide (4NQO) released NDH II, but not WRN from the centrosome. Surprisingly, the double-stranded DNA break repair-induced histone variant gammaH2AX was also found in centrosomes of interphase and mitotic cells. Following DNA damage by 4NQO, gammaH2AX left the centrosome with similar kinetics as NDH II. In vitro pull-down assays confirmed a direct physical interaction between these two proteins. Since NDH II associated with gammaH2AX after DNA damage, we suggest that complex formation between NDH II and gammaH2AX may occur in pre-assembled complexes at the centrosome, which are subsequently recruited to sites of damaged DNA for inducing the repair process.  相似文献   

5.
XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.Key words: Cockayne syndrome, progeria, DNA annealing, DNA replication, DNA damage response  相似文献   

6.
7.
The premature aging and cancer-prone disease Werner syndrome stems from loss of WRN protein function. WRN deficiency causes replication abnormalities, sensitivity to certain genotoxic agents, genomic instability and early replicative senescence in primary fibroblasts. As a RecQ helicase family member, WRN is a DNA-dependent ATPase and unwinding enzyme, but also possesses strand annealing and exonuclease activities. RecQ helicases are postulated to participate in pathways responding to replication blockage, pathways possibly initiated by fork regression. In this study, a series of model replication fork substrates were used to examine the fork regression capability of WRN. Our results demonstrate that WRN catalyzes fork regression and Holliday junction formation. This process is an ATP-dependent reaction that is particularly efficient on forks containing single-stranded gaps of at least 11–13 nt on the leading arm at the fork junction. Importantly, WRN exonuclease activity, by digesting the leading daughter strand, enhances regression of forks with smaller gaps on the leading arm, thus creating an optimal structure for regression. Our results suggest that the multiple activities of WRN cooperate to promote replication fork regression. These findings, along with the established cellular consequences of WRN deficiency, strongly support a role for WRN in regression of blocked replication forks.  相似文献   

8.
Binding and melting of D-loops by the Bloom syndrome helicase   总被引:10,自引:0,他引:10  
Bloom syndrome is a rare autosomal disorder characterized by predisposition to cancer and genomic instability. BLM, the structural gene mutated in individuals with the disorder, encodes a DNA helicase belonging to the RecQ family of helicases. These helicases have been established to serve roles in both promoting and preventing recombination. Mounting evidence has implicated a function for BLM during DNA replication; specifically, BLM might be involved in rescuing stalled or collapsed replication forks by a recombination-based mechanism. We have tested this idea by examining the binding and melting activity of BLM on oligonucleotide substrates containing D-loops, DNA structures that model the presumed initial intermediate formed during homologous recombination. We find that BLM preferentially melts those D-loops that are formed more favorably by the strand exchange protein Rad51, but whose polarity could be less favorable for enabling restoration of an active replication fork. We propose a model in which BLM selectively dissociates recombination intermediates likely to be unfavorable for recombination-promoted replication.  相似文献   

9.
Werner syndrome is a premature aging and cancer-prone hereditary disorder caused by deficiency of the WRN protein that harbors 3' -->5' exonuclease and RecQ-type 3' --> 5' helicase activities. To assess the possibility that WRN acts on partially melted DNA intermediates, we constructed a substrate containing a 21-nucleotide noncomplementary region asymmetrically positioned within a duplex DNA fragment. Purified WRN shows an extremely efficient exonuclease activity directed at both blunt ends of this substrate, whereas no activity is observed on a fully duplex substrate. High affinity binding of full-length WRN protects an area surrounding the melted region of the substrate from DNase I digestion. ATP binding stimulates but is not required for WRN binding to this region. Thus, binding of WRN to the melted region underlies the efficient exonuclease activity directed at the nearby ends. In contrast, a WRN deletion mutant containing only the functional exonuclease domain does not detectably bind or degrade this substrate. These experiments indicate a bipartite structure and function for WRN, and we propose a model by which its DNA binding, helicase, and exonuclease activities function coordinately in DNA metabolism. These studies also suggest that partially unwound or noncomplementary regions of DNA could be physiological targets for WRN.  相似文献   

10.
Werner was originally identified as a protein that interacts with the product of the Werner syndrome (WS) gene, WRN. To examine the function of the WRNIP1/WRN complex in cells, we generated knock-out cell lines that were deficient in either WRN (WRN(-/-)), WRNIP1 (WRNIP10(-/-/-)), or both (WRNIP1(-/-/-)/WRN(-/-)), using a chicken B lymphocyte cell line, DT40. WRNIP1(-/-/-)/WRN(-/-) DT40 cells grew at a similar rate as wild-type cells, but the rate of spontaneous sister-chromatid exchange was augmented compared to that of either of the single mutant cell lines. Moreover, while WRNIP1(-/-/-) and WRN(-/-) cells were moderately sensitive to camptothecin (CPT), double mutant cells showed a synergistic increase in CPT sensitivity. This suggested that WRNIP1 and WRN do not always function cooperatively to repair DNA lesions. The lack of a discernable functional interaction between WRNIP1 and WRN prompted us to reevaluate the nature of the physical interaction between these proteins. We found that MBP-tagged WRNIP1 interacted directly with WRN, and that the interaction was enhanced by the addition of ATP. Mutations in the Walker A motifs of the two proteins revealed that WRNIP1, but not WRN, must bind ATP before an efficient interaction can occur.  相似文献   

11.

Background  

The cancer-prone and accelerated aging disease Werner syndrome is caused by loss of function of the WRN gene product that possesses ATPase, 3' to 5' helicase and 3' to 5' exonuclease activities. Although WRN has been most prominently suggested to function in telomere maintenance, resolution of replication blockage and/or recombinational repair, its exact role in DNA metabolism remains unclear. WRN is the only human RecQ family member to possess both helicase and exonuclease activity, but the mechanistic relationship between these activities is unknown. In this study, model single-stranded and 3' overhang DNA substrates of varying length and structure were used to examine potential coordination between the ATPase/helicase and exonuclease activities of WRN.  相似文献   

12.
Werner syndrome is a human disorder characterized by premature aging, genomic instability, and abnormal telomere metabolism. The Werner syndrome protein (WRN) is the only known member of the RecQ DNA helicase family that contains a 3' --> 5'-exonuclease. However, it is not known whether both activities coordinate in a biological pathway. Here, we describe DNA structures, forked duplexes containing telomeric repeats, that are substrates for the simultaneous action of both WRN activities. We used these substrates to study the interactions between the WRN helicase and exonuclease on a single DNA molecule. WRN helicase unwinds at the forked end of the substrate, whereas the WRN exonuclease acts at the blunt end. Progression of the WRN exonuclease is inhibited by the action of WRN helicase converting duplex DNA to single strand DNA on forks of various duplex lengths. The WRN helicase and exonuclease act in concert to remove a DNA strand from a long forked duplex that is not completely unwound by the helicase. We analyzed the simultaneous action of WRN activities on the long forked duplex in the presence of the WRN protein partners, replication protein A (RPA), and the Ku70/80 heterodimer. RPA stimulated the WRN helicase, whereas Ku stimulated the WRN exonuclease. In the presence of both RPA and Ku, the WRN helicase activity dominated the exonuclease activity.  相似文献   

13.
14.
Werner syndrome (WS) is characterized by features of premature aging and is caused by loss of the RecQ helicase protein WRN. WS fibroblasts display defects associated with telomere dysfunction, including accelerated telomere erosion and premature senescence. In yeast, RecQ helicases act in an alternative pathway for telomere lengthening (ALT) via homologous recombination. We found that WRN associates with telomeres when dissociation of telomeric D loops is likely during replication and recombination. In human ALT cells, WRN associates directly with telomeric DNA. The majority of TRF1/PCNA colocalizing foci contained WRN in live S phase ALT cells but not in telomerase-positive HeLa cells. Biochemically, the WRN helicase and 3' to 5' exonuclease act simultaneously and cooperate to release the 3' invading tail from a telomeric D loop in vitro. The telomere binding proteins TRF1 and TRF2 limit digestion by WRN. We propose roles for WRN in dissociating telomeric structures in telomerase-deficient cells.  相似文献   

15.
Humans have five RecQ helicases, whereas simpler organisms have only one. Little is known about whether and how these RecQ helicases co-operate and/or complement each other in response to cellular stress. Here we show that RECQL5 associates longer at laser-induced DNA double-strand breaks in the absence of Werner syndrome (WRN) protein, and that it interacts physically and functionally with WRN both in vivo and in vitro. RECQL5 co-operates with WRN on synthetic stalled replication fork-like structures and stimulates its helicase activity on DNA fork duplexes. Both RECQL5 and WRN re-localize from the nucleolus into the nucleus after replicative stress and significantly associate with each other during S-phase. Further, we show that RECQL5 is essential for cell survival in the absence of WRN. Loss of both RECQL5 and WRN severely compromises DNA replication, accumulates genomic instability and ultimately leads to cell death. Collectively, our results indicate that RECQL5 plays both co-operative and complementary roles with WRN. This is an early demonstration of a significant functional interplay and a novel synthetic lethal interaction among the human RecQ helicases.  相似文献   

16.
Sidorova JM 《DNA Repair》2008,7(11):1776-1786
Congenital deficiency in the WRN protein, a member of the human RecQ helicase family, gives rise to Werner syndrome, a genetic instability and cancer predisposition disorder with features of premature aging. Cellular roles of WRN are not fully elucidated. WRN has been implicated in telomere maintenance, homologous recombination, DNA repair, and other processes. Here I review the available data that directly address the role of WRN in preserving DNA integrity during replication and propose that WRN can function in coordinating replication fork progression with replication stress-induced fork remodeling. I further discuss this role of WRN within the contexts of damage tolerance group of regulatory pathways, and redundancy and cooperation with other RecQ helicases.  相似文献   

17.
Functional role of the Werner syndrome RecQ helicase in human fibroblasts   总被引:3,自引:0,他引:3  
Werner syndrome is an autosomal recessive human genetic instability and cancer predisposition syndrome that also has features of premature aging. We focused on two questions related to Werner syndrome protein (WRN) function in human fibroblasts: Do WRN‐deficient fibroblasts have a consistent cellular phenotype? What role does WRN play in the recovery from replication arrest? We identified consistent cell proliferation and DNA damage sensitivity defects in both primary and SV40‐transformed fibroblasts from different Werner syndrome patients, and showed that these defects could be revealed by acute depletion of WRN protein. Mechanistic analysis of the role of WRN in recovery from replication arrest indicated that WRN acts to repair damage resulting from replication arrest, rather than to prevent the disruption or breakage of stalled replication forks. These results identify readily quantified cell phenotypes that result from WRN loss in human fibroblasts; delineate the impact of cell transformation on the expression of these phenotypes; and define a mechanistic role for WRN in the recovery from replication arrest.  相似文献   

18.
WRN is a member of the RecQ family of DNA helicases implicated in the resolution of DNA structures leading to the stall of replication forks. Fragile sites have been proposed to be DNA regions particularly sensitive to replicative stress. Here, we establish that WRN is a key regulator of fragile site stability. We demonstrate that in response to mild doses of aphidicolin, WRN is efficiently relocalized in nuclear foci in replicating cells and that WRN deficiency is associated with accumulation of gaps and breaks at common fragile sites even under unperturbed conditions. By expressing WRN isoforms impaired in either helicase or exonuclease activity in defective cells, we identified WRN helicase activity as the function required for maintaining the stability of fragile sites. Finally, we find that WRN stabilizes fragile sites acting in a common pathway with the ataxia telangiectasia and Rad3 related replication checkpoint. These findings provide the first evidence of a crucial role for a helicase in protecting cells against chromosome breakage at normally occurring replication fork stalling sites.  相似文献   

19.
Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS. Furthermore, TRF2, a protein essential for telomere protection, interacts with WRN and influences its basic helicase and exonuclease activities. However, these studies provided little insight into WRN''s specific function at telomeres. Here, we explored the possibility that WRN and TRF2 cooperate during telomeric recombination processes. Our results indicate that TRF2, through its interactions with both WRN and telomeric DNA, stimulates WRN-mediated strand exchange specifically between telomeric substrates; TRF2''s basic domain is particularly important for this stimulation. Although TRF1 binds telomeric DNA with similar affinity, it has minimal effects on WRN-mediated strand exchange of telomeric DNA. Moreover, TRF2 is displaced from telomeric DNA by WRN, independent of its ATPase and helicase activities. Together, these results suggest that TRF2 and WRN act coordinately during telomeric recombination processes, consistent with certain telomeric abnormalities associated with alteration of WRN function.  相似文献   

20.
Werner syndrome (WS) is a severe recessive disorder characterized by premature aging, cancer predisposition and genomic instability. The gene mutated in WS encodes a bi-functional enzyme called WRN that acts as a RecQ-type DNA helicase and a 3′-5′ exonuclease, but its exact role in DNA metabolism is poorly understood. Here we show that WRN physically interacts with the MSH2/MSH6 (MutSα), MSH2/MSH3 (MutSβ) and MLH1/PMS2 (MutLα) heterodimers that are involved in the initiation of mismatch repair (MMR) and the rejection of homeologous recombination. MutSα and MutSβ can strongly stimulate the helicase activity of WRN specifically on forked DNA structures with a 3′-single-stranded arm. The stimulatory effect of MutSα on WRN-mediated unwinding is enhanced by a G/T mismatch in the DNA duplex ahead of the fork. The MutLα protein known to bind to the MutS α–heteroduplex complexes has no effect on WRN-mediated DNA unwinding stimulated by MutSα, nor does it affect DNA unwinding by WRN alone. Our data are consistent with results of genetic experiments in yeast suggesting that MMR factors act in conjunction with a RecQ-type helicase to reject recombination between divergent sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号