首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The March/April 2002 issue of Evolution and Development focused on three presentations made at the Starting from Fins: Parallelism in the Evolution of Limbs and Genitalia symposium held as part of the 2001 Chicago meeting of the Society of Integrative and Comparative Biology. The intention of the symposium and the publication of the presentations was to extend discussion of the potential and the limits of using serial homologues to understand developmental aspects of morphological evolution. The March/April 2002 issue concentrated on unpaired fin to genitalia transitions. This issue focuses on paired fins to limbs and highlights the need for developmental data to be integrated with data from fossil materal, phylogenetic analysis, and explicitly comparative studies. Coates et al. use phylogenetic methods to explore the limb/fin characters of taxa, but their analysis departs somewhat from the usual in that the reference group for organisms includes sister group taxa not usually considered true tetrapods. They state that including finned taxa from the stem group permits an attempt to distinguish the primitive condition of the characteristics demonstrated by the crown group, that is, "limbed tetrapods." In focusing on limb characters specifically and including aspects of the appendicular girdles, Coates et al. highlight morphological details and trends within a given phylogeny. They also demonstrate the degree of relevance of limb characters during the establishment of lineages and their branching patterns by using only limb characters to generate a tree and use a direct comparison of serial versus special homologies to explore the degree of evolutionary parallelism between fore-and hindlimbs. The preliminary conclusions indicate a high level of independence between the serially homologous fore-and hindlimb. Innes et al. present outcomes from the use of cutting edge molecular genetic approaches to understand developmental aspects of limb morphology. In a manner conceptually similar to Coates et al.'s use of fossil characters, Innes et al. use the serial analysis of gene expression to sort differences from similarities in the gene expression profiles of fore-and hindlimbs of the same embryos. Although these gene expression pattems are likely to reflect the serial homology of the paired limbs, they are silent in terms of our understanding both the profound and subtle differences between fore- and hindlimbs in any given species. Innes et al. point out the volume of data generated by SAGE far exceeds our ability to interpret its biological meaning. The studies presented here and in the March/April issue are excellent examples of the need to interpret complex data in light of collective knowledge of evolutionary history. We hope the insights gained from the symposium and papers contribute to a dialogue on how to integrate different approaches and assist in moving forward the field of Evolution and Development.  相似文献   

2.
The signaling pathways of bone morphogenic protein 2 (BMP-2) and Sonic hedgehog (Shh) are related during embryogenesis. Both proteins have been implicated as important components during osteogenic differentiation; e.g., considering their in vitro effects in the pluripotent C3H10T/1/2 cell system. Also, BMP-2 has been frequently reported to stimulate adipogenesis as well as osteogenesis in these cells. We investigated the relative potencies of Shh and BMP-2 with regard to adipogenesis. We performed differentiation experiments by stimulating C3H10T1/2 cells with BMP-2, Shh, or a combination. We monitored adipocyte-like differentiation via gene expression analysis and cytologic staining. An adipocytic phenotype was observed in BMP-2-treated cells, as shown by upregulation of two adipocytic marker mRNAs, PPAR-gamma and aP2, and by staining of lipid-filled cell vesicles with Oil Red O. In contrast, no adipocyte-like differentiation could be detected either after treatment with Shh or after exposure to a combination of Shh and BMP-2. Our results demonstrate for the first time that Shh and BMP-2 have contrary effects on adipocyte-like differentiation. Whereas BMP-2 promotes the adipocytic lineage, Shh suppresses the expression of the BMP-2-induced fat-cell phenotype.  相似文献   

3.
External genital development begins with formation of paired genital swellings, which develop into the genital tubercle. Proximodistal outgrowth and axial patterning of the genital tubercle are coordinated to give rise to the penis or clitoris. The genital tubercle consists of lateral plate mesoderm, surface ectoderm, and endodermal urethral epithelium derived from the urogenital sinus. We have investigated the molecular control of external genital development in the mouse embryo. Previous work has shown that the genital tubercle has polarizing activity, but the precise location of this activity within the tubercle is unknown. We reasoned that if the tubercle itself is patterned by a specialized signaling region, then polarizing activity may be restricted to a subset of cells. Transplantation of urethral epithelium, but not genital mesenchyme, to chick limbs results in mirror-image duplication of the digits. Moreover, when grafted to chick limbs, the urethral plate orchestrates morphogenetic movements normally associated with external genital development. Signaling activity is therefore restricted to urethral plate cells. Before and during normal genital tubercle outgrowth, urethral plate epithelium expresses Sonic hedgehog (Shh). In mice with a targeted deletion of Shh, external genitalia are absent. Genital swellings are initiated, but outgrowth is not maintained. In the absence of Shh signaling, Fgf8, Bmp2, Bmp4, Fgf10, and Wnt5a are downregulated, and apoptosis is enhanced in the genitalia. These results identify the urethral epithelium as a signaling center of the genital tubercle, and demonstrate that Shh from the urethral epithelium is required for outgrowth, patterning, and cell survival in the developing external genitalia.  相似文献   

4.

Background  

Axolotls have the unique ability, among vertebrates, to perfectly regenerate complex body parts, such as limbs, after amputation. In addition, axolotls pattern developing and regenerating autopods from the anterior to posterior axis instead of posterior to anterior like all tetrapods studied to date. Sonic hedgehog is important in establishing this anterior-posterior axis of limbs in all tetrapods including axolotls. Interestingly, its expression is conserved (to the posterior side of limb buds and blastemas) in axolotl limbs as in other tetrapods. It has been suggested that BMP-2 may be the secondary mediator of sonic hedgehog, although there is mounting evidence to the contrary in mice. Since BMP-2 expression is on the anterior portion of developing and regenerating limbs prior to digit patterning, opposite to the expression of sonic hedgehog, we examined whether BMP-2 expression was dependent on sonic hedgehog signaling and whether it affects patterning of the autopod during regeneration.  相似文献   

5.
6.
HoxD expression and cartilage pattern formation were compared after application of a recombinant amino-terminal peptide of Sonic hedgehog protein (Shh-N) and implantation of cells expressing the Sonic hedgehog (Shh) gene. During digit duplication after implantation of a Shh-N-soaked bead, BMP-2 and Patched expression was transiently induced in the anterior limb mesenchyme 20 h after grafting, but was reduced to the basal level 48 h after grafting. On the contrary, when Shh-expressing cells were grafted to the anterior limb bud, expression domains of the BMP-2 and Patched genes were initially induced in the restricted region in close proximity to the grafted cells. Induced expression of BMP-2 and Patched was maintained in the anterior-peripheral region of the limb bud for 42 h after grafting. In either case, HoxD12 and HoxD13 were consistently induced in the anterior-distal limb mesenchyme, accompanying mirror-image duplication of the digit pattern. Induction and maintenance of HoxD expression were consistent with the resultant digit pattern. A steep gradient of Shh activity provided by Shh-expressing cells is most adequate to induce complete digit pattern, as compared to the shallow gradient provided by Shh-N protein released from a bead. These results suggest that positional identity is respecified by Shh-N activity within the first 24 h during digit duplication, and that Shh-N on its own is not acting as a long-range signaling molecule to determine positional identity at a distance in the limb bud.  相似文献   

7.
Fibroblast growth factor interactions in the developing lung.   总被引:3,自引:0,他引:3  
Cellular activities that lead to organogenesis are mediated by epithelial-mesenchymal interactions, which ultimately result from local activation of complex gene networks. Fibroblast growth factor (FGF) signaling is an essential component of the regulatory network present in the embryonic lung, controlling proliferation, differentiation and pattern formation. However, little is known about how FGFs interact with other signaling molecules in these processes. By using cell and organ culture systems, we provide evidence that FGFs, Sonic hedgehog (Shh), bone morphogenetic protein 4 (BMP-4), and TGFbeta-1 form a regulatory circuit that is likely relevant for lung development in vivo. Our data show that FGF-10 and FGF-7, important for patterning and growth of the lung bud, are differentially regulated by FGF-1, -2 and Shh. In addition, we show that FGFs regulate expression of Shh, BMP-4 and other FGF family members. Our data support a model in which Shh, TGFbeta-1 and BMP-4 counteract the bud promoting effects of FGF-10, and where FGF levels are maintained throughout lung development by other FGFs and Shh.  相似文献   

8.
Sonic hedgehog in the nervous system: functions, modifications and mechanisms   总被引:17,自引:0,他引:17  
Signaling by Sonic hedgehog (Shh) controls important developmental processes, including dorsoventral neural tube patterning, neural stem cell proliferation, and neuronal and glial cell survival. Shh signaling involves lipid modifications to Shh itself, as well as changes in protein subcellular localization. Recent advances have revealed the importance of palmitoylation and acylation of Shh on its potency and migration capacity. Subsequent trafficking and organelle sorting in the Shh signaling pathway have been observed; these observations offer a new dimension to our understanding of downstream signal transduction events.  相似文献   

9.
Stromal–epithelial signaling is a critical regulator of normal prostate development and has been speculated to play an equally important role in the development and progression of prostate cancer. Sonic hedgehog (Shh) and bone morphogenetic proteins (BMP-4, BMP-7), expressed by the urogenital sinus epithelium and mesenchyme, exert reciprocal and coordinate effects on outgrowth of nascent prostate ducts. Over-expression of Shh in the LNCaP xenograft was shown previously to accelerate tumor growth by a paracrine mechanism. A survey of BMP regulators expressed in the developing prostate revealed increased Noggin and BMP-7 mRNA in the stromal component of Shh over-expressing xenografts. In vitro studies demonstrated that treatment of LNCaP cells with BMP-4 and BMP-s7 induced Id-1 expression and inhibited tumor cell proliferation. The activity of BMP-4 was abrogated by co-addition of Noggin; the activity of BMP-7 was not. Quantitative analysis of BMP signaling revealed ambivalent results: decreased tumor cell expression of the BMP response gene Id-1 but increased staining for phospho-SMAD 1,5, 8. To directly test whether increased xenograft tumor growth could be explained by Noggin-mediated blockade of BMP-2/4 effects on tumor cell proliferation, we generated LNCaP xenografts containing stromal cells over-expressing Noggin. Tumor cells in these xenografts exhibited decreased Id-1 and reduced SMAD phosphorylation, but tumor growth was not altered. We conclude that tumor cell Shh expression can induce significant changes in expression of BMP ligands and inhibitors in the stromal microenvironment but that acceleration of LNCaP xenograft tumor growth by Shh over-expression cannot be attributed solely to increased Noggin expression in the tumor stroma.  相似文献   

10.
11.
Bone morphogenetic proteins `BMPs' are polypeptide signaling molecules, belonging to the TGF-β superfamily. They were originally identified by their ability to induce ectopic bone formation, but their expression patterns in embryos suggest multiple functions. BMP-7-deficient mice show among other mesodermal and skeletal patterning defects, polydactyly in the hindlimbs `Luo G, Hofmann C, Bronckers ALJJ, Sohocki M, Bradley A, Karsenty G `1995': Genes Dev 9:2808-2820; Dudley AT, Lyons KM, Robertson EJ `1995': Genes Dev 9:2795-2807'. Here we report a more detailed analysis of the limb phenotype in BMP-7-deficient mice using in situ hybridization to monitor expression of molecules implicated in patterning processes of the developing vertebrate limb. In previous studies we showed that Sonic hedgehog (Shh) was expressed normally, but Hoxd-13 expression in limb mesenchyme was lower in BMP-7 mutant limbs. Here we show that Hoxd-11 expression domains are also contracted and decreased in intensity in mutant limbs, suggesting that 5′ genes of the Hoxd cluster are coordinately downregulated, while another Bmp, Bmp-2, which can be activated by Shh, is similarly expressed. The mutant limb buds are broader than normal buds, and fibroblast growth factor Fgf-8 is expressed throughout the extended ridge. However, expression of the homeobox gene Msx-1, which has been shown to be involved in epithelial-mesenchymal interactions during limb development, was decreased in the mesenchyme of BMP-7 mutant limbs. Taken together, our data suggest that BMP-7 is involved in regulating proliferation and/or epithelial-mesenchymal interactions in the developing limb. © 1996 Wiley-Liss Inc.  相似文献   

12.
The mouse mutants of the hemimelia-luxate group (lx, lu, lst, Dh, Xt, and the more recently identified Hx, Xpl and Rim4; [1] [2] [3] [4] [5]) have in common preaxial polydactyly and longbone abnormalities. Associated with the duplication of digits are changes in the regulation of development of the anterior limb bud resulting in ectopic expression of signalling components such as Sonic hedgehog (Shh) and fibroblast growth factor-4 (Fgf4), but little is known about the molecular causes of this misregulation. We generated, by a transgene insertion event, a new member of this group of mutants, Sasquatch (Ssq), which disrupted aspects of both anteroposterior (AP) and dorsoventral (DV) patterning. The mutant displayed preaxial polydactyly in the hindlimbs of heterozygous embryos, and in both hindlimbs and forelimbs of homozygotes. The Shh, Fgf4, Fgf8, Hoxd12 and Hoxd13 genes were all ectopically expressed in the anterior region of affected limb buds. The insertion site was found to lie close to the Shh locus. Furthermore, expression from the transgene reporter has come under the control of a regulatory element that directs a pattern mirroring the endogenous expression pattern of Shh in limbs. In abnormal limbs, both Shh and the reporter were ectopically induced in the anterior region, whereas in normal limbs the reporter and Shh were restricted to the zone of polarising activity (ZPA). These data strongly suggest that Ssq is caused by direct interference with the cis regulation of the Shh gene.  相似文献   

13.
Appel B  Eisen JS 《Neuron》2003,40(3):461-464
Learning how the incredible diversity of neurons in the vertebrate central nervous system (CNS) is generated is a central focus of developmental neuroscience. Three studies in the September 25, 2003, issue of Neuron bring us closer to this goal by revealing how the interplay between Fibroblast Growth Factor (FGF), retinoic acid (RA), and Sonic hedgehog (Shh) signaling regulate progression of spinal cord progenitor cells through various phases of development and specify particular types of spinal motor neurons (MNs).  相似文献   

14.
Sonic hedgehog (Shh) is recognized as one of the main morphogens that regulates cell differentiation during early development of the stomach. In the adult stomach, Shh is expressed and secreted from the acid-producing parietal cells, where it is believed to play an essential role in gastric tissue homeostasis and normal differentiation of the epithelium. The present Themes article focuses on reviewing the literature and controversies surrounding the processing and secretion and the role of Shh in the adult stomach.  相似文献   

15.
Sonic hedgehog (Shh) ligand secreted by the notochord induces distinct ventral cell identities in the adjacent neural tube by a concentration-dependent mechanism. To study this process, we genetically engineered mice that produce bioactive, fluorescently labeled Shh from the endogenous locus. We show that Shh ligand concentrates in close association with the apically positioned basal body of neural target cells, forming a dynamic, punctate gradient in the ventral neural tube. Both ligand lipidation and target field response influence the gradient profile, but not the ability of Shh to concentrate around the basal body. Further, subcellular analysis suggests that Shh from the notochord might traffic into the neural target field by means of an apical-to-basal-oriented microtubule scaffold. This study, in which we directly observe, measure, localize and modify notochord-derived Shh ligand in the context of neural patterning, provides several new insights into mechanisms of Shh morphogen action.  相似文献   

16.
Sonic hedgehog (Shh) has been proposed to function as an inductive and trophic signal that controls development of epaxial musculature in vertebrate embryos. In contrast, development of hypaxial muscles was assumed to occur independently of Shh. We here show that formation of limb muscles was severely affected in two different mouse strains with inactivating mutations of the Shh gene. The limb muscle defect became apparent relatively late and initial stages of hypaxial muscle development were unaffected or only slightly delayed. Micromass cultures and cultures of tissue fragments derived from limbs under different conditions with or without the overlaying ectoderm indicated that Shh is required for the maintenance of the expression of myogenic regulatory factors (MRFs) and, consecutively, for the formation of differentiated limb muscle myotubes. We propose that Shh acts as a survival and proliferation factor for myogenic precursor cells during hypaxial muscle development. Detection of a reduced but significant level of Myf5 expression in the epaxial compartment of somites of Shh homozygous mutant embryos at E9.5 indicated that Shh might be dispensable for the initiation of myogenesis both in hypaxial and epaxial muscles. Our data suggest that Shh acts similarly in both somitic compartments as a survival and proliferation factor and not as a primary inducer of myogenesis.  相似文献   

17.
The roles of Sonic hedgehog (Shh) and Bone morphogenetic protein-2 (Bmp-2) in osteoblast differentiation were investigated using in vitro cell systems. Recombinant amino-terminal portion of SHH (rSHH-N) dose dependently stimulated ALP activity in C3H10T1/2 and MC3T3-E1 cells. rSHH-N induced expression of Osteocalcin mRNA in C3H10T1/2 cells. A soluble form of the receptor for type IA BMP receptor antagonized rSHH-N-induced ALP activity in C3H10T1/2 and MC3T3-E1 cells, indicating that BMPs are involved in SHH-induced osteoblast differentiation. Simultaneous supplement with rSHH-N and BMP-2 synergistically induced ALP activity and expression of Osteocalcin mRNA in C3H10T1/2 cells. Pretreatment with rSHH-N for 6 h enhanced the response to BMP-2 by increasing ALP activity in C3H10T1/2 and MC3T3-E1 cells. Stimulatory effects of rSHH-N and additive effects with rSHH-N and BMP-2 on ALP activity were also observed in mouse primary osteoblastic cells. Transplantation of BMP-2 (1 microg) into muscle of mice induced formation of ectopic bone, whereas transplantation of r-SHH-N (1-5 microg) failed to generate it. These results indicate that Shh plays important roles in osteoblast differentiation by cooperating with BMP.  相似文献   

18.
Sonic hedgehog (Shh) is a crucial regulator of organ development during embryogenesis. We investigated whether intramyocardial gene transfer of naked DNA encoding human Shh (phShh) could promote a favorable effect on recovery from acute and chronic myocardial ischemia in adult animals, not only by promoting neovascularization, but by broader effects, consistent with the role of this morphogen in embryogenesis. After Shh gene transfer, the hedgehog pathway was upregulated in mammalian fibroblasts and cardiomyocytes. This resulted in preservation of left ventricular function in both acute and chronic myocardial ischemia by enhanced neovascularization, and reduced fibrosis and cardiac apoptosis. Shh gene transfer also enhanced the contribution of bone marrow-derived endothelial progenitor cells to myocardial neovascularization. These data suggest that Shh gene therapy may have considerable therapeutic potential in individuals with acute and chronic myocardial ischemia by triggering expression of multiple trophic factors and engendering tissue repair in the adult heart.  相似文献   

19.
To investigate the origin and nature of the signals responsible for specification of the dermatomal lineage, excised axial organs in 2-day-old chick embryos were replaced by grafts of the dorsal neural tube, or the ventral neural tube plus the notochord, or aggregates of cells engineered to produce Sonic hedgehog (Shh), Noggin, BMP-2, Wnt-1, or Wnt-3a. By E10, grafts of the ventral neural tube plus notochord or of cells producing Shh led to differentiation of cartilage and muscles, and an impaired dermis derived from already segmented somites. In contrast, grafts of the dorsal neural tube, or of cells producing Wnt-1, triggered the formation of a feather-inducing dermis. These results show that the dermatome inducer is produced by the dorsal neural tube. The signal can be Wnt-1 itself, or can be mediated, or at least mimicked by Wnt-1.  相似文献   

20.
It has been proposed that digit identity in chick limb bud is specified in a dose-dependent fashion by a long-range morphogen, produced by the polarising region. One candidate is Sonic hedgehog (Shh) protein, but it is not clear whether Shh acts long or short range or via Bmps. Here we dissect the relationship between Shh and Bmp signalling. We show that Shh is necessary not only for initiating bmp2 expression but also for sustaining its expression during the period when additional digits are being specified. We also show that we can reproduce much of the effect of Shh during this period by applying only Bmp2. We further demonstrate that it is Bmps that are responsible for digit specification by transiently adding Noggin or Bmp antibodies to limbs treated with Shh. In such limbs, multiple additional digits still form but they all have the same identity. We also explored time dependency and range of Shh signalling by examining ptc expression. We show that high-level ptc expression is induced rapidly when either Shh beads or polarising regions are grafted to a host limb. Furthermore, we find that high-level ptc expression is first widespread but later more restricted. All these data lead us to propose a new model for digit patterning. We suggest that Shh initially acts long range to prime the region of the limb competent to form digits and thus control digit number. Then later, Shh acts short range to induce expression of Bmps, whose morphogenetic action specifies digit identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号