首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The precise cellular and subcellular locations of coated vesicle protein, clathrin, in rat kidney and cerebellum have been visualized by immunocytochemical techniques. In the renal tubular epithelia, clathrin-positive products were found on both free ribosomes and on those attached to rough endoplasmic reticulum (RER) and the nuclear envelope. No clathrin was observed in the cisternae of RER or the Golgi apparatus. Clathrin-positive reaction products could also be seen on coated pits, coated vesicles, Golgi-associated vesicles, basolateral cell membrane, the ground substance, and in the autophagic vacuoles. In cerebellar Purkinje and granule cell bodies, reaction products were seen localized on coated vesicles, on the budding areas from the Golgi-associated membrane and Golgi-associated vesicles. Furthermore, the membrane of the multivesicular body, the bound-ribosomes, and the ground substance were also stained. In the myelinated axon, the clathrin appeared to be concentrated on certain segments and seemed to fill in the space between neurotubules and some vesicles. In certain synaptic terminals clathrin was often seen attached to presynaptic vesicles, presynaptic membrane, and post-synaptic membrane. However, in most mossy fibers, some synaptic vesicles were not stained. These observations suggest that clathrin is synthesized on bound and free ribosomes and discharged into the cytosol where it becomes associated with a variety of ground substances and assembles on coated pits, coated vesicles, Golgi-associated vesicles, presynaptic vesicles, and pre- and postsynaptic membranes. Clathrin may be finally degraded in autophagic vacuoles.  相似文献   

2.
The unassembled (soluble) and assembled (particulate) pools of clathrin in murine lymphocytes have been separated by centrifugation, and specifically quantified by immunoblotting of cellular extracts with an anticlathrin heavy chain monoclonal antibody. In resting spleen lymphocytes only 25-30% of the total cellular clathrin was found to be present in an assembled form. Upon activation of lymphocytes with B or T cell mitogens (lipopolysaccharide or concanavalin A), the levels of assembled clathrin increased to 60% of the total. These changes in the levels of assembled clathrin were not due to an increase in total cellular clathrin concentration following lymphocyte activation, but rather to changes in the steady state ratio of assembled to unassembled clathrin. The increase in assembled clathrin preceded the expression of transferrin receptors, as measured by the cell surface binding of an antitransferrin receptor monoclonal antibody, and maximal DNA synthesis, indicating that clathrin assembly occurs early after lymphocyte activation and precedes cell division. Immunofluorescence analysis of activated lymphocytes with an anti-clathrin heavy chain monoclonal antibody revealed a punctuate staining pattern characteristic of coated pits and vesicles. Activated B lymphocytes displayed particularly prominent staining in the perinuclear region compared to T cells, suggesting that clathrin assembly may be important for B cell functions such as immunoglobulin synthesis or secretion. These results suggest that in lymphocytes, clathrin assembly is a dynamic process that is triggered by mitogenic stimuli.  相似文献   

3.
Phosphorylation of brain synaptic and coated vesicle proteins was stimulated by Ca2+ and calmodulin. As determined by 5-15% sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (PAGE), molecular weights (Mr) of the major phosphorylated proteins were 55,000 and 53,000 in synaptic vesicles and 175,000 and 55,000 in coated vesicles. In synaptic vesicles, phosphorylation was inhibited by affinity-purified antibodies raised against a 30,000 Mr protein doublet endogenous to synaptic and coated vesicles. When this doublet, along with clathrin, was extracted from coated vesicles, phosphorylation did not take place, implying that the protein doublet may be closely associated with Ca2+/calmodulin-dependent protein kinase. Affinity-purified antibodies, raised against clathrin used as a control antibody, failed to inhibit Ca2+/calmodulin-dependent phosphorylation in either synaptic or coated vesicles. Immunoelectron cytochemistry revealed that this protein doublet was present in axon terminal synaptic and coated vesicles. Synaptic vesicles also displayed cAMP-dependent kinase activity; coated vesicles did not. The molecular weights of phosphorylated synaptic vesicle proteins in the presence of Mg2+ and cAMP were: 175,000, 100,000, 80,000, 57,000, 55,000, 53,000, 40,000, and 30,000. Based on the different phosphorylation patterns observed in synaptic and coated vesicles, we propose that brain vesicle protein kinase activities may be involved in the regulation of exocytosis and in retrieval of synaptic membrane in presynaptic axon terminals.  相似文献   

4.
We have analyzed brain coated vesicles and synaptic plasma membrane for the presence of the plasma membrane proteolipid protein. Coated vesicles were isolated from calf brain gray matter with a final purification on Sephacryl S-1000 and reisolated twice by chromatography to ensure homogeneity. Fractions were analyzed by gel electrophoresis, immunoblotting for clathrin heavy chain, and by electron microscopy. Using an immunoblotting assay we were able to demonstrate the presence of the plasma membrane proteolipid protein in these coated vesicles at a significant level (i.e., approximately 1% of the bilayer protein of these vesicles). Reisolation of coated vesicles did not diminish the concentration of the protein in this fraction. Removal of the clathrin coat proteins or exposure of the coated vesicles to 0.1 M Na2CO3 showed that the plasma membrane proteolipid protein is not removed during uncoating and lysis but is intrinsic to the membrane bilayer of these vesicles. These studies demonstrate that plasma membrane proteolipid protein represents a significant amount of the bilayer protein of coated vesicles, suggesting that these vesicles may be a transport vehicle for the intracellular movement of the plasma membrane proteolipid protein. Isolation of synaptic plasma membranes proteolipid adult rat brain and estimation of the plasma membrane proteolipid protein content using the immunoblotting method confirmed earlier studies that show this protein is present in this membrane fraction at high levels as well (approximately 1-2%). The level of this protein in the synaptic plasma membrane suggests that the synaptic plasma membrane is one major site to which these vesicles may be targeted or from which the protein is being retrieved.  相似文献   

5.
We have systematically investigated certain characteristics of the ATP-dependent proton transport mechanism of bovine brain clathrin-coated vesicles. H+ transport specific activity was shown by column chromatograpy to co-purify with coated vesicles, however, the clathrin coat is not required for vesicle acidification as H+ transport was not altered by prior removal of the clathrin coat. Acidification of the vesicle interior, measured by fluorescence quenching of acridine orange, displayed considerable anion selectively (Cl- greater than Br- much greater than NO3- much greater than gluconate, SO2-(4), HPO2-(4), mannitol; Km for Cl- congruent to 15 mM), but was relatively insensitive to cation replacement as long as Cl- was present. Acidification was unaffected by ouabain or vanadate but was inhibited by N-ethylmaleimide (IC50 less than 10 microM), dicyclohexylcarbodiimide (DCCD) (IC50 congruent to 10 microM), chlorpromazine (IC50 congruent to 15 microM), and oligomycin (IC50 congruent to 3 microM). In contrast to N-ethylmaleimide, chlorpromazine rapidly dissipated preformed pH gradients. Valinomycin stimulated H+ transport in the presence of potassium salts (gluconate much greater than NO3- greater than Cl-), and the membrane-potential-sensitive dye Oxonol V demonstrated an ATP-dependent interior-positive vesicle membrane potential which was greater in the absence of permeant anions (mannitol greater than potassium gluconate greater than KCl) and was abolished by N-ethylmaleimide, protonophores or detergent. Total vesicle-associated ouabain-insensitive ATPase activity was inhibited 64% by 1 mM N-ethylmaleimide, and correlated poorly with H+ transport, however N-ethylmaleimide-sensitive ATPase activity correlated well with proton transport (r = 0.95) in the presence of various Cl- salts and KNO3. Finally, vesicles prepared from bovine brain synaptic membranes exhibited H+ transport activity similar to that of the coated vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Summary A monoclonal antibody that recognises the C-terminal part of substance P was used to study immunoreactive structures in the substantia nigra by the unlabeled antibody, peroxidase-antiperoxidase procedure. Immunoreactivity was present in nerve fibres in all parts of the substantia nigra, particularly in the pars reticulata and pars lateralis. Electron microscopically two types of bouton immunoreactive for substance P were found: Type 1 contained large electron-lucent vesicles, occasional large granulated vesicles and formed symmetrical synapses with dendrites. Type 2 boutons contained smaller, round electron-lucent vesicles, many large granular vesicles and formed asymmetrical synapses (having prominent postjunctional dense bodies) with dendrites and perikarya.Immunoreactive fibres with varicosities that had been identified light microscopically were studied in serial sections in the electron microscope. Each identified varicosity contained synaptic vesicles and formed a single synapse. An individual fibre formed boutons of only one kind (type 1 or type 2) and could form multiple synapses with the same neuron. Thus, an identified fibre in the pars compacta had eight varicosities, each of which was in synaptic contacts (type 2) with the dendrites or soma of the same neuron.The results are consistent with the concept that substance P is a synaptic transmitter in the substantia nigra and indicate that neurons in this region may receive a significant input from substance P-containing afferents, and that there are at least two types of such afferent fibres.  相似文献   

7.
Summary Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diamin-obenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

8.
Synaptic connections between neurons immunoreactive for arginine vasopressin (AVP) and axon terminals immunoreactive for neuropeptide Y (NPY) were found in the magnocellular part of the paraventricular nucleus (PVN) in the rat hypothalamus. In pre-embedding double immunolabeling, NPY axon terminals labeled with diaminobenzidine (DAB) reaction product established synaptic junctions on the perikarya and neuronal processes of AVP neurons labeled with silver-gold particles. Ultrastructural morphology of the neurons was more suitably preserved by a combination of pre- and post-embedding procedures. The presynaptic NPY terminals contained many small clear vesicles and a few cored vesicles, and DAB chromogen (immunoreaction product) was located on the surface of the vesicular profiles and on the core. The postsynaptic AVP neurons possessed many large secretory granules labeled with gold particles. At the synaptic junctions, small clear vesicles were accumulated at the presynaptic membrane, and the postsynaptic membrane was coated with a dense accumulation of fine electron dense particles. The perikarya also received synapses made by immuno-negative axon terminals containing many small clear vesicles and a few cored vesicles. These terminals were found more frequently than those containing NPY.  相似文献   

9.
The tuberculo-ventral tract represents a short nervous circuit within the auditory cochlear nuclei. Tuberculo-ventral neurons of the dorsal cochlear nucleus send isofrequency inhibitory inputs to bushy cells of the ventral cochlear nucleus. Injection of wheat germ agglutinin conjugated to horseradish peroxidase into the rat ventral cochlear nucleus, labelled tuberculo-ventral neurons retrogradely in the deep polymorphic layer of the ipsilateral dorsal cochlear nucleus. Five to 20% of the perimeter of these cells was covered by synaptic boutons, most of which contained flat and pleomorphic vesicles. These boutons contained glycine and sometimes GABA. Occasional small axo-somatic boutons contained round vesicles and were immunonegative for both glycine and GABA. This study shows that the synaptic profile of tuberculo-ventral neurons is different from that of other medium-size glycinergic neurons within the polymorphic layer or more superficial regions of the dorsal cochlear nucleus like cartwheel neurons. In fact the latter mostly receive boutons that contain pleomorphic vesicles.  相似文献   

10.
Summary Neuroblastoma cells grown on substrates in culture develop long processes and assume the morphology of normal neurons as judged light microscopically. The development of synapses in the cultured tissue is studied by periodic electron microscopic examination of the areas of contact between cells. The initial expiants are free of any apparent synaptic contacts. After 48 h in culture, simple swellings or boutons are detected at the periphery of the cells or at the end of the fine processes. These initial synaptic profiles contain a few vesicles but lack mitochondria. The synaptic vesicles appear to originate from the smooth endoplasmic reticulum. Further expiants remain primitive, only the number of vesicles in the cytoplasmic swellings or boutons increases. These clusters of vesicles are 40–60 nm in diameter and morphologically distinguishable from the synaptic vesicles of normal neurons. There are no postsynaptic folds or membrane thickenings. Specialized cell contacts between cells are also present.  相似文献   

11.
The catecholaminergic innervation of the hypothalamic paraventricular nucleus (PVN) of the rat was studied by preembedding immunocytochemical methods utilizing specific antibodies which were generated against catecholamine synthesizing enzymes. Phenylethanolamine-N-methyltransferase (PNMT)-immunoreactive terminals contained 80-120 nm dense core granules and 30-50 nm clear synaptic vesicles. The labeled boutons terminated on cell bodies and dendrites of both parvo- and magnocellular neurons of PVN via asymmetric synapses. The parvocellular subnuclei received a more intense adrenergic innervation than did the magnocellular regions of the nucleus. Dopamine-beta-hydroxylase (DBH)-immunopositive axons were most numerous in the periventricular zone and the medial parvocellular subnucleus of PVN. Labeled terminal boutons contained 70-100 nm dense granules and clusters of spherical, electron lucent vesicles. Dendrites, perikarya and spinous structures of paraventricular neurons were observed to be the postsynaptic targets of DBH axon terminals. These asymmetric synapses frequently exhibited subsynaptic dense bodies. Paraventricular neurons did not demonstrate either PNMT or DBH immunoreactivity. The fibers present within the nucleus which contained these enzymes are considered to represent extrinsic afferent connections to neurons of the PVN. Tyrosine hydroxylase (TH)-immunoreactivity was found both in neurons and neuronal processes within the PVN. In TH-cells, the immunolabel was associated with rough endoplasmic reticulum, free ribosomes and 70-120 nm dense granules. Occasionally, nematosome-like bodies and cilia were observed in the TH-perikarya. Unlabeled axons established en passant and bouton terminaux type synapses with these TH-immunopositive cells. TH-immunoreactive axons terminated on cell bodies as well as somatic and dendritic spines of paraventricular parvocellular neurons. TH-containing axons were observed to deeply invaginate into both dendrites and perikarya of magnocellular neurons. These observations provide ultrastructural evidence for the participation of central catecholaminergic neuronal systems in the regulation of the different neuronal and neuroendocrine functions which have been related to hypothalamic paraventricular neurons.  相似文献   

12.
Summary The ultrastructural study of the lateral geniculate nucleus (LGN) of the tree shrew (Tupaia glis) revealed two types of neurons: (1) a large thalamocortical relay cell (TCR), which may bear cilia, and (2) a small Golgi type-II interneuron (IN) with an invaginated nucleus. The narrow rim of pale cytoplasm of the IN contains fewer lysosomes and fewer Nissl bodies than the cytoplasm of the TCR. The IN perikarya, which in some cases establish somatosomatic contacts, frequently contain flattened or pleomorphic synaptic vesicles. The ratio of TCR to IN is 31.Three types of axon terminals were observed in the LGN. Two of them contain round synaptic vesicles but differ in size. The large RL boutons undergo dark degeneration after enucleation; they are the terminals of retino-geniculate fibers. The smaller RS boutons show dark degeneration after ablation of the visual cortex; they are the terminals of the cortico-geniculate fibers. The third type of bouton (F1 does not degenerate after either intervention. The boutons of this type are filled with flattened vesicles and are believed to be intrageniculate terminals. F2-profiles were interpreted as presynaptic dendrites of the IN. The characteristic synaptic glomeruli found in the LGN contain in their center an optic terminal. These optic terminals establish synaptic contacts with dendrites or spine-like dendritic protrusions of TCRs as well as with presynaptic dendrites. Synaptic triads were also seen. The distribution of the individual types of synaptic contacts in layers 3 and 4 was determined. Layer 4 contains only one third of the retino-geniculate synapses and of the synaptic contacts of F1-terminals.  相似文献   

13.
Large neurons in the dorsal cochlear nucleus of the guinea pig which project to the inferior colliculus were identified after injections of the neural tracer WGA-HRP. Retrograde labelled cells (pyramidal and giant neurons) in the dorsal cochlear nucleus were glycine and GABA immunonegative and showed a similar ultrastructure. Between 30 and 60% of their perimeter was covered by axo-somatic boutons, most of which (>50%) contained pleomorphic synaptic vesicles. Other boutons (about 40% of total) contained flat vesicles and few (5-6%) contained round vesicles, a characteristic of the excitatory cells innervating the inferior colliculus. Immunogold-cytochemistry, coupled to silver intensification, showed that more than 50% of axo-somatic pleomorphic boutons and over 90% of boutons containing flat and pleomorphic vesicles store glycine. Rare WGA-HRP labelled axo-somatic boutons containing flat-pleomorphic vesicles were seen on pyramidal and giant neurons. This suggests that a few inhibitory collicular terminals contact the excitatory large neurons in the dorsal cochlear nucleus.  相似文献   

14.
Reversibility of coated vesicle dissociation   总被引:3,自引:0,他引:3  
The dissociation of the coated vesicles to clathrin and uncoated vesicles and their reassociation have been studied under various conditions. The extent of reassociation is pH dependent and increases slightly with increasing concentrations of the components. Unlike the self-association of clathrin which is strongly salt dependent, the reassociation of clathrin and uncoated vesicles is practically independent of salt concentration. The coated vesicle gradually loses its coat with increasing pH, and the dissociation process is not an all or none reaction. Ca2+ inhibits dissociation of the coated vesicles and enhances the reassociation of clathrin and uncoated vesicles. Our results show that, although many conditions result in reassociation of protein and lipid vesicle, few conditions result in vesicles of both the same size and composition as native coated vesicles.  相似文献   

15.
In searching for binding partners of the intracellular domain of the immunoglobulin superfamily adhesion molecule CHL1, we identified the clathrin-uncoating ATPase Hsc70. CHL1 gene ablation resulted in reduced targeting of Hsc70 to the synaptic plasma membrane and synaptic vesicles, suggesting CHL1 as a synapse-targeting cue for Hsc70. CHL1 accumulates in presynaptic membranes and, in response to synapse activation, is targeted to synaptic vesicles by endocytosis. CHL1 deficiency or disruption of the CHL1/Hsc70 complex results in accumulation of abnormally high levels of clathrin-coated synaptic vesicles with a reduced ability to release clathrin. Generation of new clathrin-coated synaptic vesicles in an activity-dependent manner is inhibited when the CHL1/Hsc70 complex is disrupted, resulting in impaired uptake and release of FM dyes in synaptic boutons. Abnormalities in clathrin-dependent synaptic vesicle recycling may thus underlie brain malfunctions in humans and mice that carry mutations in the CHL1 gene.  相似文献   

16.
Not much is known about the mobility of synaptic vesicles inside small synapses of the central nervous system, reflecting a lack of methods for visualizing these dynamics. We adapted confocal spot detection with fluctuation analysis to monitor the mobility of fluorescently labeled synaptic vesicles inside individual boutons of cultured hippocampal neurons. Using Monte Carlo simulations we were able to propose a simple quantitative model that can describe vesicle mobility in small hippocampal boutons under resting conditions and different pharmacological treatments. We find that vesicle mobility in a time window of 20 s can be well described by caged diffusion (D approximately 5 x 10(-5) microm(2)/s, cage sizes of approximately 50 nm). Mobility can be upregulated by phosphatase blockage and increased further by actin disruption in a dose-dependent manner. Inhibition of the myosin light chain kinase slows down vesicle mobility 10-fold, whereas other kinases like protein kinase C (PKC), A (PKA), and calmodulin kinase II (caMKII) do not affect mobility in unstimulated boutons.  相似文献   

17.
The phosphorylation in vitro, on serine residues by endogenous casein kinase 2, of the clathrin beta light chain (33 kDa) of rat liver coated vesicles requires the presence of poly(L-lysine) which acts through binding to the beta light chain. The phosphorylation of other proteins is also increased in the presence of poly(L-lysine) and casein kinase 2. In contrast, the phosphorylation of the upper band of the 50-kDa protein doublet from rat liver coated vesicles is inhibited. Rat liver coated vesicles display a protein phosphatase activity which preferentially dephosphorylates clathrin beta light chain. This activity is different from the protein phosphatase which dephosphorylates the 50-kDa protein. This enzyme seems to be unrelated to the ATP/Mg-dependent protein phosphatase, or the polycation-stimulated protein phosphatases, which dephosphorylate the 50-kDa protein and beta light chain very efficiently, but with a different specificity. After dissociation of coated vesicles the beta-light-chain phosphatase activity is recovered in the membrane fraction. This phosphatase activity is inhibited by 50 microM orthovanadate and 5 mM p-nitrophenyl phosphate but not by 10 mM EDTA.  相似文献   

18.
Intact neurons in cultures of fetal rodent spinal cord explants show stimulation-dependent uptake of horseradish peroxidase (HRP) into many small vesicles and occasional tubules and multivesicular bodies (MVB) at presynaptic terminals. Presynaptic terminals were allowed to take up HRP during 1 h of strychnine-enhanced stimulation of synaptic transmitter release and then "chased" in tracer-free medium either with strychnine or with 10 mM Mg++ which depresses transmitter release. Tracer-containing vesicles are lost from terminals under both chase conditions; the loss is more rapid (4-8 h) with strychnine than with 10 mM Mg++ (8-16 h). There is a parallel decrease in the numbers of labeled MVB's at terminals. Loss of tracer with 10 mM Mg++ does not appear to be due to the membrane rearrangements (exocytosis coupled to endocytosis) that presumably lead to initial tracer uptake; terminals exposed to HRP and Mg++ for up to 16 h show little tracer uptake into vesicles. Nor is the decrease likely to the due to loss of HRP enzyme activity; HRP is very stable in solution. During the chases there is a striking accumulation of HRP in perikarya that is far more extensive in cultures initially exposed to tracer with strychnine than 10 mM Mg++ regardless of chase conditions. Much of the tracer ends up in large dense bodies. These findings suggest that synaptic vesicle membrane turnover involves retrograde axonal transport of membrane to neuronal perikarya for further processing, including lysosomal degradation. The more rapid (4-8 h) loss of tracer-containing vesicles with strychnine may reflect vesicle membrane reutilization for exocytosis.  相似文献   

19.
Continuous neurotransmitter release is subjected to synaptic vesicle availability, which in turn depends on vesicle recycling and the traffic of vesicles between pools. We studied the role of Synaptotagmin-7 (Syt-7) in synaptic vesicle accessibility for release in hippocampal neurons in culture. Synaptic boutons from Syt-7 knockout (KO) mice displayed normal basal secretion with no alteration in the RRP size or the probability of release. However, stronger stimuli revealed an increase in the size of the reserve and resting vesicle pools in Syt-7 KO boutons compared with WT. These data suggest that Syt-7 plays a significant role in the vesicle pool homeostasis and, consequently, in the availability of vesicles for synaptic transmission during strong stimulation, probably, by facilitating advancing synaptic vesicles to the readily releasable pool.  相似文献   

20.
The synaptic connections of the axon initial segment (IS) of retrogradely labeled corticocollicular neurons in the rabbit visual cortex were studied using the HRP-EM method. Identified IS showed relatively few synaptic boutons unevenly distributed along their surface. All these axo-axonic terminals contained pleomorphic vesicles and formed symmetrical synaptic junctions with the IS. The possible origin and chemical nature of these synaptic boutons are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号